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INTRODUCTION 

This chapter reviews the mechanics of shear slippage and 

rupture in rock masses. The physical problem often arises because 

of the presence of a plane or thin zone of weakness - sometimes a 

joint or a fault - in a body under applied load. Discussion of 

the formation of such a plane of weakness is not within the scope 

of this article. Rather we shall focus on the slip response under 

increasing gross shear load transmitted across a pre-existing weak 

plane. The slip response may be stable initially, then becomes 

unstable] leading to a dynamic shear rupture at higher applied 

loads. When the slip distribution is very non-uniform with slip 

confined to a finite segment of the plane of weakness, a Griffith 

crack type failure may result. In contrast] the whole plane may 

cut through the body and slip occurs more or less uniformly. The 

former type of crack failure is usually described by fracture 

mechanics, and the latter by classical strength theory. A more 

general concept, known as the slip-weakening model (and 

tension-softening model in the corresponding tensile failure mode) 

recognizes the elastic brittle crack description and the simple 

strength description as limiting cases. The connection between 

these concepts forms a major focus of this review article. 

While the applications and examples chosen to illustrate the 

theories presented are heavily slanted towards earthquake faults, 

the concepts are equally valid and applicable in many other fields 
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of research, such as in geotechnical engineering where failure of 

jointed rock masses or failure in overconsolidated clay slopes are 

of major concern. The relevance of the mechanics of slip rupture 

to understanding the physics of the earthquake source process is 

obvious. For an appreciation of the physical context of slip 

rupture representation of earthquakes, the reader is referred to 

the text (especially Chapter 7) by Kasahara (1981) on the relation 

between tectonics and earthquakes. 

Elastic dislocation theory has proved to be very useful in 

describing displacement discontinuities (slip) in otherwise 

continuous bodies. A convenient way of thinking about a 

dislocation is to imagine a planar cut in a body. The two faces 

of this cut are slid uniformly and then are glued back together. 

This operation introduces dislocation stress and displacement 

fields in the body. A non-uniform slip distribution can be 

constructed by putting a number of such dislocations at logistic 

locations, and the resulting stress and displacement fields are 

obtained by superimposing the stress and displacement fields of 

each discrete dislocation. This construction is sometimes 

referred to as a continuously distributed or smeared dislocation. 

Geophysicists have taken advantage of such a procedure to estimate 

the seismic slip distributions on earthquake faults by inverting 

the measured displacement field on the ground surface (see, e.g. 

Chinnery, 1961, 1970; Savage and Hastie, 1966; Walsh, 1969 and 

Rybicki, 1986). More recently, post-seismic leveling measurements 
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have also been used to estimate rheological properties based on 

dislocation displacement fields derived from layered 

elastic/viscoelastic half-space models (see, e.g. Thatcher et al, 

1980). Such kinematic models occupy an important place in using 

measurable quantities of surface deformation to deduce (directly) 

unmeasurable quantities of fault slip and material properties of 

the earth. However, a shortcoming of kinematic modelling is that 

it provides limited insight into the physical processes leading to 

an instability. Such insights are important, for example, to 

forecast an earthquake rupture, since it would piovide a rational 

basis to interpret sei,smic (such as foreshocks) and aseismic (such 

as surface displacement rate and strain rate changes) precursory 

signals. The study of non-kinematic models of slip rupture, of 

which elastic brittle crack theory is a special case, is another 

major theme in this article. 

To reach beyond kinematic modelling, it is necessary to 

prescribe some kind of constitutive law which relates fault slip 

to stress. In order for a seismic event to radiate energy from 

the source, the stress is expected to drop with increasing slip. 

This implies that natural faults can be described by a 

slip-weakening model. In the laboratory slip-weakening behavior is 

directly observable in a variety of specimens, including 

overconsolidated clay samples, and in intact, sawcut and jointed 

rock specinex. Extrapolatloiis of iiiaterlal parameters obtained 

from the laboratory to the real Earth has always been a difficult 
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task, and those related to the slip-weakening model are no 

exception. Even s o ,  some recent non-kinematic models (e.g. 

Stuart, et a1 1985) have generated results consistent with 

available geodetic data covering a period of time. Moreover, such 

models project into the future how slip continues to develop 

until instability. 

This article is organized in three sections. The first deals 

with a summary of essential ideas in fracture mechanics, 

emphasizing the interpretation and relation among the fracture 

parameters K, G and J in shear cracks. This section is concise 

because of the widely available literature on this subject and 

several recent review articles on their applications to 

geophysical problems (Rudnicki, 1980 ; Rice, 1980 ; Dmowska and 

Rice, 1986). The second section describes the slip-weakening 

model. The physical interpretation of the slip-weakening model 

and connections to G and J are emphasized. The model is used to 

illustrate the loss of stability of a simple slip system. This 

section also summarizes fracture resistance properties deduced 

from laboratory tests and from observations .of earthquake 

faulting. The third and last section deals with the general 

formulation of the problem of non-uniform slip distribution in a 

continuum. There are two focuses in the section: the structure 

of the stress transmission Green’s function which incorporates 

information about the rheology (elasticity, viscoelasticity, and 

poro-elasticity) and geometry of the continuum containing the slip 

I 
i 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 
I 
U 
I 
I 
I 
I 
1 

8 

plane; and the formulation o f  non-kinematic problems. Several 

examples from recent geophysical literature are discussed. 

The coverage in this article is necessarily incomplete, even 

as far as the mechanics of shear rupture applied to earthquake 

faults is concerned. For example, the dynamic 'rupture process 

important to seismology is not included. Excellent review of this 

subject could be found in Dmowska and Rice (1986), and in the text 

by Aki and Richards (1980) on quantitative seismology. With few 

exceptions, most of our discussions will focus on 2-D problems. 

This should not be construed as an indication that shear rupture 

problems are inherently 2-D, although in many circumstances they 

could be approximated as such. In section 4 ,  we do describe a 

line-spring procedure which reduces a 3-D problem into a 2-D 

one. Within limitations, such a technique appears to be quite 

powerful and provides a computationally economical alternative to 

solving full-scale 3-D fault problems. 

Apart from the references mentioned above, the reader will 

find the following publications of particular interest: Journal 

of Geophysical Research special issue on Fault Mechanics and its 

Relation to Earthquake Prediction (Vol 84, May, 1979), Pure and 

Applied Geophysics special issue on Earthquake Prediction (1'01 

122, No. 6, 1984/5), and an American Geophysical Union publication 

Earthquake Source Mechanics published for the 5th Maurice Ewing 

Symposium (i986j. 
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I1 SHEAR FRACTURE MECHANICS 

In contrast to applications to technological materials which 

deal mostly with tensile fracture, application of fracture 

mechanics to the earth’s crust involves mainly shear cracks. This 

is due to a number of reasons, notably the presence of.lithostatic 

pressure which reduces the tendency of tensile cracking on a large 

scale. Repeated ruptures on the same plane also prevents fracture 

propagation from deviating markedly from the pre-existing weakened 

fault plane. Pre-existing fault zones must act as guides to shear 

rupture since without such a weakened plane, shear cracks in 

brittle laboratory specimens often tend to develop kinking or 

wing cracks from the ends of a shear sliding plane. While 

tensile cracking is not usually seen on a scale of tens or 

hundreds of km, it can still form on a more local scale, sometimes 

in the form of en-echelon tensile cracks which are joined together 

by the through-running main shear rupture. As an example, soil 

cracking at an angle to the main rupture was observed in the 1966 

Parkfield earthquake (Allen and Smith, 1966). Recent work on 

compression failure of brittle material by Nemat-Nasser and Horii 

(1982) and Ashby and Hallam (1986) may shed some light on this 

phenomenon. However, our focus in this article will be on a much 

larger scale than that of the en-echelon tensile cracks. 

In general, there is not much difference between the analysis 

of shear and tensile cracks. Two points which play an important 

role in understanding earthquake ruptures, however, should be 
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noted. The first is that unlike tensile cracks, shear crack faces 

are not stress-free even if the surfaces have been well slid. 

However, the residual frictional resistance may be regarded as a 

reference stress level, as will be explained further in section 

2.1. In any case it is useful to keep in mind that the frictional 

work acts as an additional energy sink, reducing the amount of 

energy available to drive the crack tip. The other characteristic 

in shear cracks is that the fracture energy release rate, at least 

for laboratory rocks, is often two orders of magnitude higher than 

that for tensile cracks (Wong, 1982a). This is presumably related 

to the difference in the physical break-down processes at the 

crack tip of a shear and a tensile crack. The shear breakdown 

process may involve the extension and linking of smaller scale 

en-echelon tensile cracks as described earlier. Laboratory 

measurements of the critical energy release rates in rocks must 

therefore be made in the fracture mode appropriate to the field 

conditions, although we shall see in section 3 that even this does 

not fully account for the discrepancy between measured magnitudes 

in the laboratory and magnitudes estimated from field 

observations. Other than the differences pointed out above, the 

analysis of shear and tensile cracks are rather similar. In the 

rest of this article, the discussions will focus mainly on shear 

cracks. 

Twc well-knmm appreaches have been nsed in the study nf 

elastic brittle cracks. The first is based on the work of Irwin 
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(1960) who characterized the intensity of the crack tip stress 

field by a stress intensity factor K (i - I, 11, I11 denoting the 
3 modes of deformation). It is hypothesized that when K reaches 

crack extension occurs. This fracture a certain value, 

i 

i 

9 

represents a balance of  the crack driving 
E i criterion K 

stress intensity with a critical stress intensity (fracture 

toughness) that the material can sustain. The second approach is 

an extension of the idea of Grif.fith (1920) by characterizing 

fracture as a balance between available enern G to drive the 

crack and the energy absorbed by the inelastic-breakdown processes 

of the material at the crack tip G . This fracture criterion 

G - Gc may be shown to .be consistent with K quasistatic 

crack propagation analysis in a linear elastic body. These 

C 

i 

single-parameter fracture characterizations are analogous to the 

classical strength concept which relates the shear stress 0 to the 

shear strength (I at failure of a specimen deforming uniformly. 

There is, however, a major difference between fracture mechanics 

t 

and the strength concept: The strength concept in general cannot 

characterize objectively the crack driving force and therefore 

fails to predict the load level a structure with flaws can carry. 

In section 3 ,  it will be seen that the strength concept and 

brittle elastic crack mechanics may be regarded as two opposite 

limiting conditions of a more general slip-weakening model. 

In the following, we shall summarize the essentials of 
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elastic brittle crack mechanics with particular focus on the 

relationships between the various fracture parameters K, G and the 

path-independent J-integral. The J-integral extends the realm of 

linear elastic fracture mechanics (LEFM) to situations where the 

small scale yielding condition (to be explained) of LEFM is 

violated. 

2.1 Elastic Brittle Crack Mechanics 

2.1.1 Asymptotic Crack Tip Stress Field: Near a sharp crack 

such as that shown in Fig. 1, the stress field based on a linear 

elastic analysis may be expressed in the asymptotic form (see, 

e.g., Rice, 1968a). 

For mode I1 deformation, 

and the near tip crack face shear slip (for plane strain) is given 

by 

+ where u and u- are the displacements in the x direction for the 1 1 1 
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upper and lower crack faces, and p and v are the shear modulus and 

Poisson's ratio respectively. For plane stress deformation, the 

factor ( 1 - v )  should be replaced by l/(l+v). 

For mode 111 deformation, 

and the near tip crack face shear slip is given by 

~ 

3 = (KIII / p )  (8r/~)~/* + o(r 3/2) (2b) 
+ 63 = u3 - u 

'The first terms in the stress expressions are l/./r singular, 

dominating the behavior of the stress field near the crack tip, 

with singularity strength given by the stress intensity factor K. 

and 5 will stand for 

and should be clear from the context of discussion). 

I11 (For brevity, K will stand for KII and K 

51 or b3, 

The constant terms of and u are retained to show explicitly the 

possibility of non-zero tractions on the crack faces and these 
n 

terms represent limits of shear and normal tractions as the tip is 

approached from within the crack. Clearly no real material can 

withstand infinite stresses so that at the crack tip, the material 

I 
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I 

behaves inelastically (shown schematically as the lightly shaded 

region at crack tip, Fig. 1). The continuously rising u as ij 
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r -+ 0 is therefore an artifact of the assumption of elastic 

behavior in the analysis from which (1) and (2 )  are derived. At 

larger distances the terms left out in the asymptotic expansion 

become significant and should not be ignored. The stress field 

(la) and (2a) are therefore valid in an annular region (shown as 

shaded in Fig. 1) surrounding the crack tip. This is often 

described as the K- dominated region. 

Equation (1) and (2)  completely describes the spatial 

distribution of the near-tip stress field and the crack face 

displacement. This form is independent of the geometry of the 

body containing the crack, and does not depend on the particular 

manner in which the body is loaded. This information is contained 

in K, which is indeed the utility of (1): For any geometry and 

loading where K is known, the near tip stress field and crack face 

displacement are completely specified. Since K defines the 

strength of the stress singularity at the crack tip, it is the 

parameter which is used in Irwin’s fracture criterion mentioned 

earlier. 

Many solutions have been obtained for elastostatic crack 

problems. For a summary of solution methods, see Parker (1981). 

Solutions for the stress intensity factor K are tabulated in Tada 

et a1 (1973) and Paris & Sih (1965). It is useful to recognize 
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(by dimensional considerations) that K must have the form 

K - o d  F(geometry, loading) ( 3 )  

where (T is a generalized loading stress and L is a characteristic 

length in the geometry of the body (often the crack length or half 

crack length). The non-dimensional function F depends on the 

details of geometry and loading. For example, for a center crack 

with half crack length R in a plate loaded remotely by a' and with 

uniform shear resistance 0 (Fig. 2 ) ,  f 

(4b) 
o f  - AO where Aa = (a -0 ) 

showing that F is a constant (6) in this simple case. The second 

fo rm ( 4 b )  suggests the usual interpretation of stress drops ha in 

seismological literature. In that case, 4 is the shear stress 

prior to seismic rupture and of is the residual friction on the 

0 

ruptured fault segment. The in-situ absolute values of the stress 

states 0 and 0 are not readily determinable. However, it is 0 f 

usually the stress (or strain) change that is of interest. Hence 

0 may be regarded as a reference stress state. f 

Another example is a semi-infinite crack in an infinite body 

whose crack faces are loaded by line forces P at a distance b from 

the crack tip (in force/unit thickness) as shown in Fig. 3 .  The 
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\ 

stress intensity factor is given by 

KII = f 6 J;; or 

This result may be used to generate (by superposition) the stress 

intensity factor for an arbitrarily loaded crack face. 

A popular model for representing the anti-plane deformation 

field of a strike-slip plate boundary (uniform along strike) with 

a shear zone sliding under a locked seismogenic layer is shown in 

Fig. 4. The quasi-plastic shear zone is modelled as the lower 

edge crack of length a while the upper edge crack with length b 

has been used to simulate shallow creep by Tse et a1 (1985). Of 

course, putting b=O is equivalent to locking the shallow crust, a 

model first employed by Turcotte & Spence (1974) in analyzing 

surface strain profiles along a line perpendicular to the plate 

boundary. The stress intensity factors at the lower and upper edge 

crack tips are given by (Tse et al, 1985). 

KIII (a) = ob J2sin(~a/H)/(a+p) 
and 

KIII (b) = a& ,/2sin(~b/H)/(a+B) (6b) 

where a = cos(~a/H) and p - cos(Tb/H). In section 4.4 this model 
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is used in a more detailed analysis of plate boundary 

deformations. 

2.1.2 Energy Release Rate G 

The energy release rate G is defined to be the energy flux to 

the crack tip zone per unit crack length advance (per unit width 

along crack front). For mode I1 shearing, this definition affords 

a connection between G and K (see e.g. Irwin, 1960). Referring I1 

to Fig. 5 and by recognizing that the process of crack extension 

is to cause the material in a small zone A 1  to slip an amount 

KII J8(AI-x )/r (lb) with stress reduction Au from ( 1 - v )  
= 12 1 21 

f + uf (la) to the residual friction c7 , the work absorption KI I 

J=q 
per unit crack advance and hence the energy release rate may then 

be calculated as 

I G = lim - AU (X ) 6 (AI-xl) dX1 2A1 J, 21 1 1 A1 -+ 0 

AI - AI -X 
= A1 lim + o - AI pr K211 so 1 dxl 

x1 

(7)  

If other modes of  deformations are involved, the additional work 

absorbed into the crack tip has to be acounted for and in that 
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case (following the same line of reasoning as above) 

For generalized plane stress deformation in mode I or 11, ( 1 - Y )  

should be replaced by l/(l+v) in (8). The linear superposition is 

appropriate here because the three deformation modes are 

independent of one another directly ahead of the crack tip. This 

same form is obtained by Dmowska and Rice (1986) in an elegant 

presentation starting with an infinitesimal growth of a general 

three-dimensional crack front and considering the associated 

energy changes in the body containing such a crack. For a given 

mode of fracture, (8) explains why the Griffith's fracture 

criterion based on G is equivalent to Irwin's fracture criterion 

based on K. 

The critical energy release rate G of the earth's crust may 

be estimated by various means, which we shall discuss in some 

detail in section 3 .  For now we would like to illustrate a use of 

elastic brittle crack mechanics with a simple example. Consider 

the creeping segment of the San Andreas fault in central 

California as a large crack of length 2.4 in an elastic plate (the 

lithosphere) under mode I1 generalized plane stress deformation 

(Fig 2 ) .  This is of course a crude approximation only, although 

t h e  currently lecked segments ef t h e  1857 ax3 1906 ruptures and 

the enhanced background seismicity near San Juan Bautista and near 

C 
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Parkfield lend credence to such a representation. The enhanced 

seismicity and the short cycle (approximately 21 years) of 

moderate Parkfield earthquakes may be considered as local slip 

instabilities in the breakdown zones of the megascale crack. With 

an effective length R and a driving stress A u ,  the crack face slip 

displacement is given by (see, e.g. Muskhelishvili, 1953) 

( 9 )  

Equation (9) is used to generate a curve fit for field data of 

fault creep in Fig. 6, which shows four sets of fault slip rate 

measurements (after Burford and Harsh, 1980; Lisowski and 

Prescott, 1981; Schulz et al, 1982) and slip rate prediction based 

on ( 9 ) .  (Since we have a linear problem, the slip rate is 

related to the stressing rate A h  in the same manner as 6 is 

related to Au in (9)). The geodolite data set should be weighted 

more than the other sets because it reflects relative displacement 

further out (up to 5 km) on each side of the fault trace than the 

other data sets and is therefore more suitable for the two 

dimensionality of the present crack model. 

The energy release rate may be estimated from 

max 
R 

x ij2 G = 8 p(l+v) 
C 

Equation (10) has been obtained by combining ( 4 ) ,  the plane stress 
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version of (7) and ( 9 )  with 6max= S(xl=O). The field data show a 

maximum slip rate of 3 . 4  cm/yr near Monarch Peak. If an average 

repeat time of 1 6 0  years is assumed for great ruptures of the 1857 

or 1906  type, then 6max = 5.44 m. Equation (10) then gives 

Gc = 6 . 3  x 10 Jm for v=O.25, p = 35 GPa and R = 80 km. The 

estimated value of G may yet be higher if one considers that 

seismic ruptures occur in the shallow crust of say, 10 km in a 

5 0  km thick lithosphere. In that case, the (thickness-averaged) 

G should be weighted by a factor of 5 which then results in 

G = 3 .2  x 10 Jm . 

6 - 2  

C 

C 
7 - 2  

C 

Rice and Simons (1976)  also used (10) to calculate G for a 

fault creep event on the San Andreas which occurred on July 1 7 ,  

1971 and was reported by King et a1 (1973) .  The maximum slip 

value Smax recorded by the four creep stations was 9 nun and the 

C 

length of the creep zone was reported to be 6 km. 

p 2 0  GPa, Rice and Simons calculated a G - 2 . 6  x 

is one of the lowest values for G reported 

observations. Presumably the episodic creep 

C 

C 

Using v=O. 2 and 

2 - 2  10 J m  . This 

based on field 

events involve 

extension of slip zones in clay gouges with low strength (see 

section 3 and Tables 3 and 4 )  or small confining pressure at 

shallow depth, whereas seismic ruptures of the 1857 or the 1906 

types involve the breaking of both fissured and competent rocks. 

An alternative more fundamental view of the energy release 

rate: based on its basic definition h u t  without referring tc! the 

linear elastic stress and deformation fields given by (1) or (2), 
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is the following: Suppose a tube of material bounded by the 

contour I' surrounding the crack tip is cut, as shown in Fig. 7. 

The energy flux going into this tube of material is used up in 

elastic straining of the material in A ,  in frictional work on the 

crack face L, and in supplying energy to drive the extension of 

the crack, If the crack extends at a steady speed v - da/dt, then 
for unit thickness in direction x 3 '  

Ti(dui/dt)dI' - j WdA + J of (d6 ./dt)dxl + G(da/dt) 
A L 

1 J 
r 

where T = o.n is the .traction vector acting on I', and W is the - = -  
€ 

elastic strain energy density, defined as nun oij deij. This 
0 

statement of energy balance presumes that any energy absorbed by 

inelastic deformation apart from frictional work, can be lumped 

into G. For steady state extension where self similarity is 

preserved (i.e., an observer riding with the moving crack tip 

always observes the same view) one can replace the time derivative 

= x1 - vt where x refers a/at by -va/axl since in that case x 

to a coordinate system fixed in space. Also if the contour r is 
1 1 

shrunk onto the crack tip, the frictional work term can be 

eliminated. Thus (11) becomes 

aui 
n W - Ti K] dI' 

r+o limJ [ 1 1 
G -  

r 
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For dynamic crack propagation, an additional term involving 

kinetic energy dissipation must be added inside the integral 

(Cherepanov, 1968; 

and Nikitin, 1970). 

2.2 The J-integral 

The J-integral 

Dmowska and Rice, 1986; Freund, 1976; Kostrov 

is defined by (Rice, 1968a) 

r A 

for two-dimensional quasi-static deformation fields in elastic 

solids. Comparison with (12) shows that G is equivalent to J in 

the limit that the contour I' shrinks onto the crack tip and when 

the self-similarity condition leading to (12) holds. In general J 

may be interpreted as the excess of energy flux through I' over the 

elastic strain energy absorption by the material inside r .  

The J integral has been shown to vanish on a closed contour 

containing no singularity, for an elastic material which is 

homogeneous, at least in the x1 direction (Rice,1968a). The 

J-integral is one component of a set of three conservation 

integrals noted by Eshelby (1957) as characterizing energetic (or 

configurational) forces on localized inhomogeneities in elastic 

s o l i d s ,  and its exploitation in treating crack problems was first 

pointed out by Rice (1968a,b). An energy release interpretation 

as in (12) was published by Cherepanov in 1967, (in Russian). (He 
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did not seem to realize that the J - integral was path- independent 

at that time.). 

For a mode I1 shear crack with shear traction 4 on the crack 

face (Fig. 8), the conservative property implies that 

- J p + J  - 0  
JQ + JQ+p+ P-Q- 

+ J is the J-integral on a contour starting from a point Q on the 

upper face of the crack, surrounding the crack tip and ending on 

the point Q- on the'lower side of the crack face; J + + is the 

J-integral on a short contour from Q to P along the upper crack 

face, etc. Equation (14) may be reduced to 

Q 

Q P  
+ + 

J + J a(86/8xl)dxl = Jp  + J a(86/8x )dxl Q 1 
Q P 

where each integral already incorporates contributions from both 
+ -  the upper and lower crack faces on which n -0 and 6 = u1 -ul . In 

the case where the crack faces are traction-free, i.e. 0-0, then 

J -J resulting in the path-independent property of J. In shear 

cracks, however, a is usually non-zero. The statement (15) is 

valid for any points P and Q. If we allow the point P to approach 

the crack tip 0, the integral term on the right hand side of (15) 

is just the energy release vanishes and the remaining part 

1 

Q P' 

lim J 
r+o P 
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rate G, by (12) and (13). Thus for mode I1 shear cracks 

Obviously the right hand side of (16a) cannot depend on the 

specific point Q. For uniform o=o , the integral term in (16a) 

is simply - u  6 i.e., 

f 

f 
Q' 

f G - J  - 0 6 ~  
Q 

Equation (16b) is a result of the small scale yielding condition 

for a shear crack, and affords another interpretation of J: It is 

the energy sum of  crack driving force and frictional dissipation. 

Equation (16b) may be exploited to obtain estimates of the 

crack driving force by choosing contours on which the terms in 

(13) can be easily evaluated. A s  an illustration, Rudnicki (1980) 

estimated the G for initiation of the 1857 California rupture 

using (16b) and the contour shown in Fig. 9. The contour is 

chosen such that the left vertical branch cuts across the San 

Andreas where it has been locked and the material there is assumed 

to deform uniformly with shear strain 7 . Similarly the point Q 

is located well inside the creep zone in central California such 

that uniform shear straining 7 may again be assumed. On both of 

the vertical contours, a pure shear state assumption implies that 

C 

0 

r 
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au./ax1-0. (The origin and the crack tip are located 

approximately at Cholame). The quantity 6 represents the creep 

magnitude at point Q .  The horizontal contours are chosen at 

1 

Q 

x = + h/2 where loading is essentially imposed by displacement, 

There n =O and au./ax =O (due to uniform imposed displacement) s o  

that no contribution is made to the J-integral. The only 

2 -  

1 1 1  

contributions come from the strain energy of the vertical 

branches. Thus 

7r 

The fault creep 6 may be estimated from the difference between 

the strains well inside the locked segment and well inside the 
Q 

creep zone, i.e. 

6 = (7, - Q 

= h so d7 
'r 

Thus at rupture initiation the critical energy release rate, using 
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(l6b), is 

Gc = h ro [0(7) - of]d7 
Y 
'r 

c 

if it is assumed that o(7) - o = p 7-7, for linear elastic 

behavior. It is interesting to note that (17) has the same form 

as (lo), with R replaced by hand smax by 6Q.  The factor n(l+v)/8 

in (10) also is close to 1/2 as in (17) for Y = 0.25. 

E l  

For numerical estimates, 6 should reflect the part of the Q 
relative plate motion accommodated by the San Andreas. Minster 

and Jordan (1984) suggested a slip rate of 35 mm/yr, which 

translates to 6 = 0.035 x 145m = 5.08m for a repeat time of 145 

years (Sieh, 1984). Strain rate profiles based on geodetic 

measurements (King, N.E., personal communications, 1984) on the 

Q 

Carrizo Plain and San Luis net decay from the fault trace and 

appear to flatten out at approximately 60 km. Thus 60 km seems to 

be an appropriate value for h. Using a crustal averaged shear 

modulus p - 35 GPa, (17) gives G to be 7.5 x 10 6 Jm -2 . 
7 -2 

Again C 

this value would be increased to 3.8 x 10 Jm if we consider 

that seismic ruptures occur to a depth one-fifth the lithospheric 

thickness I These values are slightly larger than Riidnicki' s 

original estimate because o f  different values assumed for 6 and 
Q 
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7 - 2  Jm for p .  

estimate using surface creep rate data from central California 

(section 2 . 1 . 2 ) .  The calculated value of Gc should be considered 

as an order of magnitude estimate only because of simplifying 

assumptions. For example the model shown in Fig. 9 assumes that 

the creep zone extends indefinitely north of Cholame. This can 

only be an approximation of the finite length (= - 1 6 0  km) of the 

creeping section of the San Andreas. 

They are consistent with the 6.3  x lo6 - 3 . 2  x 10 

This section reviews shear fracture mechanics. The fracture 

parameters K, G and J are introduced, and their relation to one 

another emphasized. Applications of fracture mechanics to model 

plate boundary deformation and various techniques in extracting 

fracture parameters based on seismic and geodetic observations are 

. demonstrated. Elements of this section form the basis for further 

discussions of the mechanics of shear rupture in sections I11 and 

IV . 
111. SLIP-WEAKENING MODEL OF SHEAR RUPTURE 

Laboratory observations from tri-axial tests in rocks 

indicate a complex breakdown process in the localized shear band 

in the post-peak regime. This breakdown process may involve 

buckling of slender columns in grains segmented by microcrack 

arrays, kinking in plate-shaped grains and rotation and crushingof 

joint blocks as seen under SEM (Evans and Wang, 1985). On a 

larger scale, direct shear testing of rock joints indicates 

shearing off and crushing of asperities in jointed rock mass, the 
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micromechanics being sensitive to the normal stress applied across 

the joint (see, e.g., Coulson, 1972). Both tri-axial rock 

specimens and direct shear jointed rock specimens in the 

laboratory show a decreasing shear load carrying capacity as a 

function of the amount of sliding. Some samples of such 

experimentally measured slip-weakening curves for initially intact 

rock specimens are shown in Fig. 10. Slip-weakening curves for 

jointed rock specimens are shown in Fig. 11. These slip-weakening 

0-6 relations define simple constitutive laws governing shear slip 

behavior. While direct use of experimental results in the field 

for earthquake faults may not be appropriate because of 

differences in size scales of fault zone structures in comparison 

to laboratory scale specimens, one may expect that certain 

behavior of fault slip may be governed by similar slip-weakening 

relations. This is so because for a fault to exhibit seismicity, 

its strength must degrade with on-going slip. 

In the following discussion (Section 3.1) a general 

constitutive model f o r  the slip-weakening process is introduced. 

The model is an extension to shear faulting by Palmer and Rice 

(1973) and Ida (1972) of the well-known cohesive zone models of 

tensile fractures developed by Barenblatt (1962) and Dugdale 

(1960) for metal. (The cohesive zone model was also used to 

describe crack extensions in concrete by Hillerborg et a1 (1976) 

and Li and Liang (1986). In this case the breakdown process 

involves the joining of discontinuous microcracks and pull-out of 
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I 

the aggregates from the cement matrix). The slip-weakening model 

will then be applied to an analysis of stability of a simple 

sliding system (Section 3.2). Relationship between the 

slip-weakening model, the J-integral and the elastic brittle crack 

model will then be described in Section 3 . 3 .  In Section 3 . 4  we 

shall discuss some estimates of the parametric values in the 

slip-weakening u-6 relations from laboratory tests of rocks, rock 

joints and overconsolidated clay and from in-situ field 

observations of natural fault behaviors 

3.1 Slip-Weakeninn Constitutive Model 

A simple general form of the slip-weakening constitutive 

model may be written as 

u - f(6, U' T) n '  

where B '  E u - p is the effective normal compressive stress 

(normal stress u reduced by pore pressure p) acting across the 

slip surface, and T is temperature. A schematic plot of (18) is 

shown in Fig. 12 which indicates a continuous decay of strength 

from op to of at large slip beyond a critical slip displacement 

6 * .  

n n 

n 

f 

both increase in a manner such that u - of first increases but 

then decreases with increasing u indicating a transition from 

Triaxial tests in rocks by Wong (1986) suggest that op and o 

P 

n '  
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brittle to ductile deformation. In a separate series of tests at 

constant normal stress, Wong (1982b) shows that the stress drop 

P P 
(J - of decreases with temperature. The (J and T dependence of (J 

and of is illustrated in Fig. 12b,c. These considerations of 

n 

normal stress and temperature dependence are important when the 

constitutive law is applied to the earth's crust, as in the work 

of Stuart & Mavko (1979), Li and Rice (1983a,b) and Li and Fares 

(1986). It is assumed in the slip-weakening relation that 

unloading and reloading from the weakening branches occur along 

vertical paths (Fig. 12a), i.e. no reverse sliding accompanies a 

load removal. - 

The model as described has no dependence on slip rate, 

although recent rock experiments by Dieterich (1978,1979), Ruina 

(1983) and Tullis and Weeks (1986) indicate that frictional 

sliding behavior has slip rate and state dependence. An 

implication of ignoring rate and state dependence is that slip 

events could not be repeated on the same surface since no 

mechanism for restrengthening is available. Thus the 

slip-weakening model is unable to describe transitions from one 

earthquake cycle to another. Even so ,  the model is capable o f  

simulating sliding behavior quite adequately in most situations. 

It is in fact a more general description of shear slip phenomenon 

than the elastic brittle crack model, which we shall reveal as a 

lirniting case of the slip-weakening model i n  Section 3.3.1. 
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3 . 2  Stability Analvsis o f  a Single-degree-of-freedom System 

3.2.1 Sliding of a spring-block system 

An earthquake may be regarded as a loss of stability in slip 

on the fault surface. If the slip weakening 0 - 6  relation is a 

fair constitutive description of the fault zone, then it should, 

in the minimum, allow a sliding surface to initiate a rapid slip 

event subsequent to some stable slip. It is important to note, 

however, that whether an unstable event is generated or not 

depends not only on the constitutive relation of the sliding 

surface but also on the stiffness of the system (loading system 

and the body which contains the sliding surface) through which 

load is transmitted to the surface. To see this more explicitly, 

consider the mechanical behavior of a simple spring-block system, 

as shown in Fig. 13a. The block is assumed to be rigid and the 

sliding surface is governed by a slip-weakening relation (solid 

line) shown in Fig. 13b, i.e., the shear stress u acting on the 

sliding surface and the block movement 6 follow such a 

relationship, The block is loaded through a spring which is 

pulled forward by the amount h0. The normal stress acting on the 

block, as well as the temperature on the sliding surface, are 

assumed t o  remain constant during the sliding process. 

The force equilibrium equation governing the system can be 

written as 

T - u  ( 1 9 )  

where T is the spring force. The load and load point displacement 
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are related by 

.T ,= k(60-6) 

This incorporates information of the structural stiffness of the 

medium (the spring) through which loading is applied to the 

sliding surface. Equations (19) and (20) may be combined and 

rewritten as 

0 = -k6 + k60 

which then defines an unloading line of the loading system with a 

negative s l o p e  -k in the (3-6 space (Fig, 13b), and with an 

intercept k6 on the vertical a-axis. Equation (21) expresses 

that equilibrium of the system is satisfied on any point of  this 

unloading line. However, f o r  each unloading line shown, only its 

intercept with the a-S curve can be the true equilibrium point 

since the sliding surface is governed by the constitutive relation 

a = a ( 6 )  , i.e., 

.o  

Thus a series of equilibrium points A ,  B, C, D may be traced as 6 

is increased by p u l l i n g  on the s p r i n g .  The unioading lines 

illustrated have been drawn at equal (vertical) intervals such 

0 
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that J0 is increased uniformly in time simulating a steady load 

point displacement. The block displacement (6A+6B+6C+6D . . . ) ,  

however, accelerates with time. For the a-6 relation and spring 

stiffness k shown in Fig. 13b, equilibrium could be maintained 

only up t o  Point E. In the sequence from A through E the force in 

the system rises to a peak (at D) and then decreases. At point E 

- the system becomes unstable in the sense that an infinitesimal 

increase in 6 causes a sudden jump in 6 (the block shoots 

forward from 6 ) accompanied by a stress drop. This is 

schematically illustrated in Fig. 13c. The final equilibrium 

position can be any one of the states F., G or H. These points are 

constrained by the fact that unloading of the spring must follow 

the unloading line E E at instability, and that the sliding 

surface must still obey the slip-weakening law (including the 

rigid unloading branches, Fig. 12a) , Furthermore, the energy loss 

from the spring must be converted into work of sliding the 

surface, which implies that 

0 

E 

which is how the point H is defined. However, if energy- is 

partially lost through seismic radiation (or heat generation other 

than that related to the frictional work on the right side in 

(23)), then the final resting equilibrium position may be at F or 

I 
1 
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G, and the equal sign in (23) should be replaced by 2 when 6H is 

replaced by 6F or 6G. As mentioned earlier, the slip weakening 

constitutive framework do not allow a natural restrengthening of 

the slipped surface. Hence reloading from G or H would follow 

first the rigid branches and then along the residual friction 

plateau. In such a system, a single instability is allowed but no 

repeated events can be generated. 

The question of how much stable sliding and at what load 

level instability sets in could be addressed by considering 

springs of different stiffnesses. The case of an infinitely stiff 

spring (vertical unloading lines) is analogous to applying the 

load directly onto the rigid block such that the load point and 

the block move stably together ( 6 = 6 0 ) .  In the case of an 

extremely compliant spring (k+o), the unloading lines are close to 

horizontal and the instability point would be at the peak of the 

slip-weakening curve. In the case of a stiff spring whose 

stiffness is greater than the negative of the slope at any point 

of the weakening branch, as shown in Fig. 13d, no instability 

would occur. The stress and slip development are schematically 

shown in Fig. 13e for this case. Note that while the slip 

accelerates, its rate does not approach infinity, as in the case 

of a true instability (Fig. 1 3 c ) .  This may be a useful conceptual 

model for what is known as "slow earthquakes" (see, e.g. Sacks et 

al, 1978). 

The considerations of where on the weakening branch 
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stability is lost explain 

machines in the laboratory 

why it is necessary to use very stiff 

(the loading assemblies act as part of 

the springs ) if one is interested in tracing the weakening 

branch in a direct shear test. Of course the remarks here apply 

to tension or compression loadedspecimens just as well (see, e.g. 

Jaeger and Cook, 1969). 

Often, in real geophysical systems, the load transmitting 

medium behaves viscoelastically. A more detailed discussion of 

such a medium will be given in section 4.2. For now we consider a 

simple single-degree-of-freedom system, and incorporate the 

viscoelastic behavior in the form of a standard linear element as 

shown in Fig. 14a. This element has the property that for long 

time response, or under a(60-6)/dt u 0 relaxed condition, the 

For short time response, or 1’ system stiffness is given by k 

under a ( I  6 0 - 6  I )/at+m unrelaxed condition, the increased stiffness 

approaches k + k2. In between these two limits, the dashpot 

modulates the contribution of k to ‘the total stiffness. In 

reference to Fig. 14b the system undergoes stable deformation up 

to the point I, where the unloading line associated with a relaxed 

stiffness kl is tangent to the slip-weakening curves. Once rapid 

acceleration is initiated, the dashpot is activated and 

effectively stiffens the loading medium. At this point the system 

is self driven in the sense that the block continues to slide to 

the right even if the load point has stopped moving, but the 

motion may still be considered quasi-static, following the path I 

1 

2 
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to D. At point D where the element stiffness has reached its 

maximum limit k + k2, dynamic instability sets in, an analogue of 

an earthquake. The period of deformation corresponding to I to D 

may represent a precursory period when anomalous activities 

associated with rapid straining are revealed. The viscoelastic 

element sets the time scale of this precursory period. 

1 

The discussion presented in this sub-section provides a 

general conceptual framework for stability analysis of any 

slip-weakening or strain-softening system. The instability 

delayed mechanism could be associated with viscoelastic 

stiffening as described above, or it could be associated with 

drainage responses in a poro-elastic medium. 

3.2.2 Application to Fault Stability Analysis 

As an illustration of  some of  the saliant points raised in 

the above instability analysis, we digress from the spring-dashpot 

slip-weakening model to consider a more realistic time-dependent 

fault system. Li and Rice (1983a,b) analyzed the stability of 

stressing of a seismic gap zone in which progressive failure 

eventually lead to an earthquake at a strike-slip tectonic plate 

margin. The actual problem involves a seismic gap zone of length 

28 in an elastic lithospheric plate underlain by a viscoelastic 

foundation. The lithosphere is assumed to undergd plane-stress 

deformation and is coupled to the asthenosphere in the form of a 
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simple foundation (Fig. 15a). A modified Elsasser model (Rice, 

1980, Lehner et al, 1981) is used to include the resistance (to 

rapid deformation) due to viscoelastic coupling as body forces in 

the lithosphere. Further, the driving stress ao(t) -a(t) (averaged 

over the lithospheric thickness, Fig, 15b) is assumed to be 

uniform over the gap zone. This causes the thickness-averaged 

slip displacement to be distributed as in (9) for a crack model. 

Li and Rice (1983a,b) related the average of this slip over the 

seismic gap to the driving stress using the representation 

[ao(t ) - a(t )]dt d t 
6(t) = 1 C(t-t ) - dt 

-w 

which is an extension of ( 2 1 )  to incorporate the viscoelastic 

effects of the stress transmitting medium. Here the driving 

displacement kSO has been replaced by the driving load term oo and 

of course k is the inverse of the compliance C(t) in ( 2 4 ) .  Indeed 

this correspondence may be easily seen in the long-time (relaxed) 

elastic limit, in which case ( 2 4 )  becomes 

and in the short time limit, in which case (24 )  becomes 

d6 = -C(O)da 

1 
I 
I 
I 
R 
1 
I 
I 
I 
I 
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To further relate oo to the physical driving mechanism - the 
relative plate velocity V - we may consider the time derivative 

of ( 2 5 ) .  In that case, the slip rate d6/dt averaged over several 
Pl 

earthquake cycles must correspond to V and the stressing rate 
Pl 

da/dt must average out to zero. Thus dao/dt = Vpl/C(~), consistent 

with the loading term kSo in (21). This direct interpretation of 

0 
4 in terms of V was noted by Tse and Rice (1986). 

Pl 
The compliance function C(t) is shown in Fig. 16 for 22 = H 

and 21 = 5H, obtained from numerical inversion of C from the 

Laplace transform space (Li and Rice, 1983a, Appendix B). The 

zero time and infinite time limits of C(t), however, are derivable 

in analytic forms 

Naturally, the compliance at infinite time corresponds to a plate 

with a completely relaxed foundation and could be obtained 

1' directly from (9) by taking the average over -1 to +R in x 

(However, (27b) is actually 16/r2 times the exact result from (9), 

due to an approximation in representing a finite length crack by a 

semi-infinite crack with a uniformly loaded finite portion from 

the crack tip (Lehner et al, 1981). A way to compensate for this 
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discrepancy is to regard B as an effective crack length equal to 

r2/16 of the actual length). The compliance at time zero 

corresponds to a fully coupled lithosphere/asthenosphere system so 

that C ( a ) > C ( O ) .  In addition, the compliance may be expected to 

increase monotonically with seismic gap zone length R and to 

decrease with shear stiffness p .  

A s  explained earlier in connection with the standard element, 

the effect of an increasing stiffness (or decreasing compliance) 

with increasing slip velocity is to delay the final instability. 

Li and Rice (1983a,b) analyzed the details of this precursory 

stage by solving (24 )  together with a crustal scale (averaged over 

the lithospheric thickness) 0 - 6  relation of plate boundary 

deformation. It should be noted that this 0 - 6  relation is not a 

material constitutive law as for the slip-weakening .model, even 

though it exhibits similar behavior of decreasing 4 with 

increasing 6 as the slip zone penetrates into the seismogenic 

zone, as described below. 

The crustal scale 0 - 6  relation is derived based on an 

anti-plane strain analysis of an edge crack strip (Fig. 15c or 

Fig. 4 with b-0) representing the deformation behavior averaged 

over the seismic gap zone. In this case u and 6 are related 
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parametrically through the crack length a 

tan(.rra/2H) 

r 1112 r 1 

1 1 In l/cos(na/2H) 6 = (4H/np) kGc(a)/H tan(na/2H) 1 
by requiring that o be of magnitude that just meets the fracture 

criteria at crack depth a. Thus G (a) is a prescribed quantity 

which should reflect the changing fracture property of the shear 

zone in the Earth. Section 3.4.1 describes experimental 

observations of the effect on G due to changes in temperature and 

pressure. Li and Rice (1983a,b) choose a Gaussian distribution 

with depth (Fig 17a), with parameters adjusted to fit typical 

C 

C 

focal depths and the thickness of the seismogenic layer. Thus, 

for example, the maximum of G or G lies at the seismogenic 

depth . 
C’ max ’ 

It may be noted that (28a) is consistent with the stress 

intensity factor calculation (6a) and (8) for an elastic brittle 

crack model. Indeed (28a) affords an estimation of the critical 

energy release rate in the earth’s seismogenic zone. Based on an 

average stress drop of 30 bars reported to be typical of great 

plate boundary ruptures (Kanamori and Anderson (1975)) and a 

focal depth of about 10 km appropriate for great ruptures on the 

San Andreas, G was constrained to 4 x 10 J/m . Li and Rice 6 2 
max 
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(1983a) also suggested that this choice of Gc produced slip 

magnitudes of 2.5 - 4.5m consistent with observed seismic slip 

magnitudes of great California ruptures. 

The resulting 0-6 relation based on (28) and on the Gaussian 

distribution of G is shown in Fig, 17b. Stability analysis of 

the plate boundary may follow the graphical analysis of the 

single-degree-of-freedom system shown in Fig. 13 or 14, at least 

up to the point of initial instability. This corresponds to the 

state when the compliance C(t) just drops below that of C ( m ) ,  

after which the numerical solution of (24) becomes necessary. 

Naturally (24 )  must now be regarded as an integral equation for 6, 

when u inside the integral is expressed in terms of 6 through 

(28). Li and Rice gave numerical solutions following through the 

process from peak stress, through initial and dynamic instability. 

The time-evolution of a, 6 ,  and u are shown in Fig. 18, for two 

different loading rates defined by the parameter R * tri0/(Km/fi), 

in which t is the relaxation time of the asthenosphere (see e.g. 

Lehner et all 1981 or Li and Rice, 1983a) and Km is the fracture 

toughness corresponding to G It may be noted that while the 

plate boundary stress u is decreasing, (Fig. 18b) the average a 

and 6 (Fig. 18a,c) are increasing and their time derivative 

reaches infinity at dynamic instability. The time scale of the 

self-driven progression from state I to D depends, among other 

things, on the relaxation time t of the asthenosphere. r 

C 

r 

max * 
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While the model described above gives a plausible 

representation of the gross phenomenon of the precursory processes 

leading to l o s s  of stability, i.e., an earthquake, the 

single-degree-of-freedom model is obviously an over-simplification 

of the source mechanism. The earthquake source process may 

involve a local nucleation followed by subsequent spreading of the 

fault surface along strike. This is even more likely when one 

considers the possibility of spatial variation of material 

properties and geometric features so that a, 6 and Q may be highly 

location dependent on the fault. To include along-strike 

variation, Tse et a1 (1985) and Li and Fares (1986) analyzed a 

multiple-degree-of-freedom system to be described in section 4 . 4 .  

Another inadequacy is related to the assumption of the elastic 

brittle edge crack model to represent the slip penetration which 

leads to the unavoidable necessity of the loss of stability as the 

slip zone approaches the ground surface; i.e. no stable continuous 

creep could be simulated. We shall reexamine this issue after 

introducing the relationship between the crack model and the slip 

weakening model in the following section. 

3 . 3  SliD-Weakening Model, J-intemal and Elastic Brittle Crack 

Model 

The behavior of shear failure as represented by a 

single-degree-of -freedom system detailed in the s e c t i o n  dmve is 

- perhaps suitable for small surfaces such as in typical laboratory 
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specimens. However, such representation is plainly inaccurate for 

a large surface such as a natural fault. This is because the 

slippage at each position on a fault surface may be quite 

different: At some position which has undergone extensive 

sliding, the stress level may be close to Q , whereas other 

positions may still be high up close to op on the slip-weakening 

f 

curve. This distributed slip situation contributes to the 

phenomenon of stress concentration, especially at material points 

where slip has barely begun (e.g. on the positive sloping branch 

of the slip-weakening curve, Fig. 12a). Indeed the business of 

fracture mechanics has, to a large extent, to deal with the 

intensity of such stress concentrations. Thus the elastic brittle 

crack model may be considered an extreme member of the 

slip-weakening model: Outside the crack the material remains 

elastic, whereas inside the crack the material has all slid down 

f to the residual friction level o , with the exception of a small 

zone at the crack tip. The smallness of this zone corresponds to 

the so called small scale yielding condition in elastic brittle 

crack mechanics. This condition may be addressed within the 

context of the slip-weakening model if we assume that the 

inelastic deformation within this small zone is governed by the 

slip-weakening constitutive relation. 
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3 . 3 . 1  Reiationship Between Energy Release Rate G and Slip- 
Weakening Model Parameters 

We show in Fig. 19a the stress distribution near the tip of a 

mode I1 sliding surface. The zone of size w contains the stress 
f degradation from peak strength a' to residual friction Q , at 

which slip 6 has reached the critical value 6 . The weakening 
* 

branch of the slip-weakening curve is shown in Fig. 19b. 

We now apply the J-integral with a contour going along the 

lower and upper crack faces surrounding the breakdown zone, 

beginning and ending at a point Q located well beyond x = -w 1 

(Fig. 19a). Recognizing that no crack tip singularity exists due 

to the presence of the breakdown zone, Eq. (16a) implies 

n o  

where Q - a ( 6 )  according to the slip-weakening relation. The 

integral term may be rewritten as' 

f 6* 

Q 
a6 

= - f [0(6) - of]d6 - u 6 
0 

by realizing that a is a single valued function of 6 (if no 

unloading occurs) and hence (86/dxl)dxl = d6, and that the square 

bracket on the right hand side of (30) vanishes for 6 > 6 . Thus 
* 
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( 2 9 )  and (30) leads to 

6 
J - of6 - I [0(6) - Uf]d6 

0 Q Q 

which may be interpreted as follows: The excess energy flux 

(above doing frictional work) made available balances the energy 

absorption in the breakdown process for slip zone extension. 

Equation (31), with the left hand side interpreted as a crack 

driving force and the right hand side interpreted as a fracture 

resistance , then affords a criterion for propagation of the slip 

zone. It is useful to note that the quantity (J - 0 6 ) cannot f 
Q Q 

depend on the particular point Q (since the right hand side of 

(31) is independent of the point Q), which suggests that 

- 0 6 ) is a path-independent parameter for cracks with crack 

face tractions, with the stipulation that the point Q be outside 

f 
( JQ Q 

the breakdown zone. Palmer and Rice (1973) used (31) to evaluate 

the criterion for the propagation of a shear band in 

over-consolidated clay in a long shear box and for the extension 

of a slip surface in a soil slope loaded by gravity in response to 

a step cut in the slope. Indeed Rudnicki's calculation of G for 

initiation of the 1857 rupture on the San Andreas described'in 

C 

section 2 is an extension of the shear box analysis by Palmer and 

Rice. 

It should be noted that the derivation of (31) makes no 
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assumptions about the size of the breakdown zone. To make contact 

with elastic brittle crack models, however, (16b) based on an 
f 

infinitesimal breakdown zone (consistent with the uniform u = u 

assumption) may be combined with (31) to give 

6* 
G - lo [ u ( 6 )  - uf]d6 

within the context of the slip-weakening model. This integral is 

just the shaded area under the slip-weakening curve (Fig. 19b) and 

may be rewritten as 

P f -  G = ( u  - ~ ) 6  

in which the nominal slip distance 2 is defined as 

S* 
1 I [ a ( & )  - of]d6 6 E -  P f  

- 

0 u -u 

Thus in the limit when the size of w is small, the slip-weakening 

model is consistent with the elastic brittle crack model with 

Gc = ( a  - u )S. At incipient faulting, the critical energy 

release rate G is now interpretable in terms of the product of 

the stress drop and the nominal slip, parameters which describe 

the crack tip breakdown process. 

P f -  

C 
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3 . 3 . 2  Estimation of the Breakdown Zone Size w: 

The breakdown zone size w at crack initiation may be 

estimated from the fact that the net stress intensity K must 

vanish for no stress singularity at 0, i.e., 

net 

IC 

Knet Kapplied -k Kbdz = 
( 3 3 )  

where K is the stress intensity factor due to applied load 

which is just equal to the critical value K at initiation of 

- is the stress intensity factor due to crack growth, 

excess (over friction) shear resistance in the breakdown zone. 

Clearly, Kbd is a negative quantity and may be calculated if the 

stress distribution in the breakdown zone is known. In general 

this information requires the solution of a singular integral 

equation which we shall describe in section 4.1. As an estimate, 

Palmer and Rice (1973) used an inverse method in which a linear 

stress distribution is assumed, and the resulting 0-6 relation is 

shown to resemble an actual slip-weakening curve (Fig. 20). In 

this case 

applied 

C 

and Kbdz 

z 

( 3 4 )  
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and using (5b) and superposition, 

f a(r)-a dr 
0 h Kbdz 

Thus ( 3 3 )  together with ( 3 4 )  and ( 3 5 )  implies 

K 2 9T 
32 w -  - 

or using (7) and ( 3 2 b )  

( 3 5 )  

( 3 7 )  

Full numerical solution of the singular integral equation 

mentioned earlier indicates that ( 3 6 )  gives a good estimate within 

10% error if the slip-weakening curve has a linear decaying shape 

(Li and Liang, 1 9 8 6 ) .  However, ( 3 6 )  is inadequate for a material 

with an exponentially decaying slip-weakening curve with a long 
* 

tail (i.e. large 6 ) .  

This section summarized the connection of the slip-weakening 

model with the J-integral in general, and with the elastic brittle 

crack model in the limit when the breakdown zone size w is small. 

Indeed in the context of the slip-weakening model, w must be 

smaller than all other characteristic dimensions (crack length, 
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distance of crack tip to boundary, etc.) in the geometry of the 

body in order to satisfy the small scale yielding condition 

required in the use of the simple elastic brittle crack model. 

Furthermore, since this length is derived from material properties 

(37), it creates a problem in geometry scaling in laboratory model 

studies (e.g. centrifuge 'studies), a difficulty first noted by 

Palmer and Rice (1973). 

It should be clear now that for most laboratory size 

specimens, w is generally relatively large and may well exceed the 

dimensions of the slip surface. In this case the 

single-degree-of-freedom system (Section 3.2) gives a good 

description of the slip behavior. In the field, linear elastic 

fracture mechanics may be used whenever w is small enough. In the 

following section, we examine the applicability of elastic brittle 

crack mechanics to a plate-boundary model in light of the 

discussions presented above. 

3.3.3 Crustal Scale Applications 

We now take up the question of whether the aseismic shear 

zone below the seismogenic layer at a plate boundary may be 

modelled by an anti-plane strain mode I11 elastic brittle edge 

crack, as shown in Fig. 4 (with b-0), assuming that we accept the 

shear zone as indeed confined to a narrow width even as it 

approaches the base of the lithosphere. This question may be 

addressed in the context of a slip-weakening model of the shear 
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zone proposed by Stuart (1979a,b) relating the local excess (over 

friction) shear strength LT to the local anti-plane slip 

displacement 6 ( ~ ~ - u ~ )  in the form + -  

2 2  
u - a(z,6) - S exp -(z-~~)~/d~] exp[-6 /A] 

Equation ( 3 8 )  has the same Gaussian variation with depth z as 

assumed in the crack model (Fig. 17a) with a reaching peak value 

at z and a spread measured by d. Furthermore in connection with 

the slip-weakening terminology introduced earlier, S is the 

0 

P f  strength drop (a -a ) and X is a measure of the critical slip 

displacement 6 . To make further contact with the crack 

mode1,(32a) requires 

* 

rm 
Gc(a) - a(z-H-a, 6)d6 

0 
( 3 9 )  

and the maximum value of G occurring in the seismogenic zone is 

given by 
C 

2 2  G = S [ exp[-6 /X ] d6 = & SA/2 max 

The size of the breakdown zone w may be estimated by ( 3 6 )  adapted 
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t o  the  an t i -p lane  mode, i . e .  

For an est imate ,  supposing a s t rength  drop S of 500 b a r s ,  and 

using the previously estimated G = 4x10 J m  , the  c r i t i c a l  s l i p  max 

distance X i s  ca lcu la ted  from ( 4 0 )  t o  be X = 90 mm and the 

breakdown zone s i z e  w =: l O O m  f o r  p = 35 GPa. This breakdown zone 

6 - 2  

s i z e  i s  much smaller than a ,  H-a and d which a re  general ly  greater  

than several  kilometers such t h a t  the use of e l a s t i c  b r i t t l e  crack 

model would seem t o  be j u s t i f i e d .  While the  s t rength  drop must be 

grea te r  than earthquake s t r e s s  drop values  averaged over the whole 

f a u l t  plane and i t s  value of 500 bars  appears t o  be cons is ten t  

with the various other  estimates (see Table 4 ) ,  a lower value of 

say S = 100 bars  (Aki's (1979)  estimate f o r  the 1966 Parkfield 

earthquake) would make X CI 450 mm and w = 2 . 5  k m  which is s t i l l  

smaller than the c h a r a c t e r i s t i c  dimensions i n  the problem but  

de f in i t e ly  approaching the l i m i t  of  v a l i d i t y  of the  e l a s t i c  

b r i t t l e  crack model. I n  t h i s  case it may be more s u i t a b l e  t o  

car ry  o u t  the  ana lys i s  using the slip-weakening model (38).  (See, 

e . g . ,  Stuar t  (1979a,b) and S tua r t  and Mavko (1979)). I n  the  l a s t  

reference,  the authors found t h a t  s t a b l e  s l i d i n g  can be a t t a ined  

by increasing the  c r i t i c a l  s l i p  dis tance X and hence the  s i z e  of 

the  breakdown zone (see ,  e . g .  Fig.  4a i n  S tua r t  and Mavko (1979), 
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with large X corresponding to the lower right hand corner). The 

stable sliding phenomenon cannot be simulated by an elastic 

brittle crack model for the plate boundary. 

3 . 4  Laboratorv and Field Estimates of Shear Fracture Parameters 

3 . 4 . 1  Laboratory estimates of shear fracture parameters 

Rice (1980) showed that laboratory triaxial test data on 

rocks could be used to deduce shear fracture parameters. Consider 

the specimen with a throughgoing fault (pre-existing saw-cut or 

post-peak localization of shear deformation) at an angle (7r/2-8) 

to the major loading axis 0 (Fig. 21a). The specimen deforms 

During the test, al, a3 and the under confining pressure 

axial shortening AL is continuously monitored. The resulting ' 

curve ( a l - a 3 )  vs. axial shortening AL including the softening 

branch (Fig. 21b) must be stably measured. A stiff machine (or a 

cyclic technique as used by Wong (1982a,b)) is required to prevent 

instability. The stability analysis of a single-degree-of-freedom 

system described in section 3.2 is applicable to such laboratory 

tests since the breakdown zone size w is generally much larger 

than the dimensions of the sliding surface. For example, Rice 

(1980, 1984) computed w for a series of triaxial tests conducted 

by Rummel et a1 (1978) in the range of 0.8 -1.2m (corrected to 

constant normal stress) for initially intact specimens. Most 

laboratory specimens have dimensions much smaller than this size. 

1 

a3 * 
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Thus it may safely be assumed that sliding occurs simultaneously 

at every point of the fault of the specimen. The method of 

obtaining the slip-weakening curve from the laboratory data is 

shown graphically in Fig. 21b,d. The shear stress u and slip 6 

may be computed from 

sin 28 ul-'3 
2 u-- 

where ALs is the relative displacement of the sliding surface in 

the axial direction (Fig. 21c). However, the values of peak stress 

up and the residual stress of are affected by the normal stress 

acting across the fault, and the normal stress changes during the 

test according to 

3 Ul + u 
2 cos 28 + O2 - u3 

2 u -  n (43) 

Rice (1984) suggested a correction procedure based on the Mohr 

circle diagram. A similar approximate scheme for reducing the ritw 

data to that corresponding to constant normal stress was detailed 

by Wong (1986), who found that the constant stress correction 

reduces the uncorrected value of G by approximately a factor of 

two. 
C 
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Based on the above technique, Wong (1982a, 1982b, 1986) 

calculated fracture parameters from several series of tests. His 

test results (and some from other investigators) are summarized in 

Table la. Wong's studies indicate a decreasing trend in the 

strength drop ,'-of with increasing temperature, suggesting a 

transition from brittle to ductile deformation. Fig. 22 shows a 

composite of two series of tests, one for San Marcos gabbro and 

the other one for Fichtelbirge granite conducted at constant 

temperature. G appears to first increase with confining stress 
C 

P f  up to 0.55 GPa and then decrease. The G and (a -0  ) variations 
C 

with temperature and normal stress are consistent with the 

observation of seismicity confinement in the shallow crustal layer 

below which quasi-plastic behavior dominates. Conducted at 

crustal scale confining pressures, these data, while still 

incomplete, are perhaps the first experimental qualitative 

evidence in support of the depth variation of slip-weakening 

parameters assigned in fault stability analysis by Stuart 

(1979a,b), Li and Rice (1983a,b) and Li and Fares (1986). See 

section 3.2.2, equation (18) and section 3.3.3, equation (38) for 

more details. The data summarized by Tse and Rice (1986), while 

phrased in terms of instantaneous and long term rate 

sensitivities, suggest a similar variation of strength drop 

potential. 

npaLL A - - - L  from triaxial test results, slip-weakening fracture 

parameters have also been reported by Okubo and Dieterich (1984) 
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based on bi-axial tests of large scale 2m long simulated faults 

At a normal stress of 0.6-4 MPa, they found that Gc ranges from 

0.1-2.4 Jm-2 for Sierra white granite with prepared surface 

roughness of 0.2pm and 80pm. The critical slip displacement 6 is 
* 

reported to be in the 0.2-10pm range for the smooth samples and 

8-40pm in the rough samples. and 6 (= 0 .56  ) , 

as well as the strength drop ap-uf , (Table lb), are several orders 

- *  
The values for G 

C 

of magnitude smaller than the corresponding values from triaxial 

tests. This lower G and (a -a ) may partly be due to the lower 

confining pressure under which the biaxial experiments have been 

carried out, but the smaller 6 is probably related to the reduced 

P f  
C 

* 

surface roughness. Okubo & Dieterich (1984) reported no 

dependence of 6 on normal stress. 
* 

Direct shear tests on rock joints have been conducted by a 

number of investigators (e.g. Coulson, 1972; Goodman, 1970, 

Barton, 1972). Many of these studies have focused mainly on the 

effect of normal stress on up and u , with little information on f 

the critical energy release rate or the critical slip displacement 

reported in the literature. However, Yip (1979) collected data 

from many rock joint tests and found a wide variation in the value 

of 6 ,  with an averge of 0.9 mm. Like Okubo and Dieterich (1984), 

he found that this average value of 6 (or 6 ) does not appear to 
* 

depend on normal stress. While this value of s is substantially 
larger than that for intact or sawcut rocks, the critical energy 

release rates G from these rock joint experiments (based on 
C 
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- 
6 = 0.9mm) are lower than that for intact rocks. This is 

P f presumably partially due to the low stress drop ( 0  - a ) 

associated with low applied normal stress in the direct shear 

tests. Slip-weakening model parameters for some rock joint tests 

are summarized in Table 2. 

Table 3 contains slip-weakening model parameters for 

over-consolidated clay from direct shear tests. While the stress 

drops (aP - a ) are relatively small, the s values are quite f 

large, on the order of several mm, as opposed to less than 1 mm 

for both rocks and rock joints. This observation may have 

important implications for natural fault behavior when clay gouges 

. are involved in the slip-weakening process. 

3 . 4 . 2  Field Estimates of Shear Fracture Parameters 

We have already discussed three methods of estimating in-situ 

slip-weakening model and fracture parameters from geodetic 

observations. The first method is based on the elastic brittle 

crack model and creep rate data from the San Andreas in central 

California (Section 2.1.2). There we obtain estimates for G of 

6.3 x 10 Jm-2 to 3.2 x 10 Jm The second method based on the 

J-integral analysis gave an estimate of Gc = 7.5 x 10 Jm to 

C 
6 7 -2 . 

6 -2 

7 - 2  3.8 x 10 Jm for the 1857 Ft. Tejon rupture in California 

(Section 2.2). The third method is based on the anti-plane strain 

edge cracked strip model of Li and Rice (Section 3.2.2) which 

gives an estimate of Gc - 4 x 10 Jm Here we shaii introduce 

another rather general technique for estimating fracture 

6- - 2  . 
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parameters in the slip-weakening model. In this technique, 

seismological and other earthquake parameters such as rise time 

rupture length 2 1  and average fault slip 6 are needed. Of tr 9 

course the average slip may be obtained from the seismic moment 

A 

and fault surface area (see, e.g. Aki and Richards, 1980). Still 

other techniques and estimates for natural faults are summarized 

in Table 4 .  

Consider a strike-slip earthquake rupture of length 2 1  (at 

least several times the plate thickness) as a mode I1 shear crack 

(Fig. 2). The average slip along the length of the rupture 

--l<x <R may be obtained by integrating (the plane strain version 1 

of) (9) to get 

( 4 4 )  

in which the relations of the stress intensity factor to stress 

drop (4b) and to energy release rate (7) have been used. The 

product (a -a )6 in the slip-weakening model may then be 

calculated using (32b) and ( 4 4 )  once 6 is determined from 

P f -  
A 

seismological observations. As an additional constraint, 

information on the rise time t of an earthquake rupture may. be 

used. The slip at each point of the fault (-R,R) at time t may be 
r 
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assumed to have the form 

during rupture, consistent with Brune's (1970) fault model. The 

coefficient in front of the square bracket in (45) may be obtained 

from dimensional considerations and B is the shear velocity, 

Assume further that the slip displacement reaches the average 

fault slip 6 at t-t i.e. 
A 

r' 

combining ( 4 5 )  and ( 4 6 )  gives the strength drop in terms of the 

average slip 

A -1 P f  - o = @ R [I - exp(-ptr/l)] ( 4 7 )  

and the critical slip b may be computed from (32b) after solving 

for G from ( 4 4 )  and oP-of from (47). Once a and ,'-of are known, 

the breakdown zone size w may be calculated using (37). As an 

illustration, for the 1976 Turkish earthquake, Purcaru and 

Berckhemer (1982) gave the following earthquake parameters: 

2 1  - 55 km, 6 - 2.45111, t 6 1 . 5 s .  For p = 35 GPa, v - 0 . 2 5  and 
A 

r 
6 - 2  B - 3.5 km/s, these earthquake data lead to G I= 6 . 5  x 10 Jm , 

C 
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- P 
C 

a - af - 180 bars, 6 = 36 cm and w - 1.6 km. 
is of the same order of magnitude as those obtained by other means 

The estimate of G 

mentioned earlier. 

A similar technique was employed by Niu (1984/5) to calculate 

the fracture parameters for 49 earthquakes with data compiled by 

Purcaru and Berckhemer (1982). However, he used a slip-weakening 

model which has constant stress ap up to 6 = 6 

u = a . Such a model does not seem to be in accord with actual 

Jr 
beyond which 

f 

material behavior. It is easy to show (see, e.g. Rice, 1980) that 

this model reduces the breakdown zone size w in (37) by a factor 

of 4 / 9 .  Another method proposed by Ida (1973) and utilized by Aki 

(1979) to obtain fracture parameters for the 1966 Parkfield 

earthquake (Table 4 )  is also rather similar to the one discussed 

above. The similarity lies in using a source-time model of fault 

slip to relate the stress-decay (a - a ) to some (indirectly) P f 

observable time parameter (rise time t described above, and time 

tM at which the slip velocity becomes maximum for an in-plane 

shear crack propagating with a uniform velocity used by Aki) and 

r 

to use elastic brittle crack theory and the slip-weakening model 

to estimate G 6 and w. While there are some differences in the 

formulae of this class of estimation methods, they are generally 

insignificant when one keeps in mind that the deduced fracture 

C’ 

parametric values should be regarded as order of magnitude 

estimates only. 

Apart from those described above, Table 4 also summarizes 
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estimates of slip-weakening model and fracture energy parameters 

by Kikuchi and Takeuchi (1970), Husseini et a1 (1975), Das (1976), 

and a number of other investigators. 

3 . 4 . 3  Variations in Fracture Parameters 

It may be seen from the previous discussions and from Table 1 

to 4 that the fracture parameters are quite different between 

those obtained from laboratory tests and those from field 

observations. The laboratory tests for intact rocks give G on 

the order l o 4  Jm-2 (and even lower for sawcut rocks, rock joints 

8 and clay) while the field estimates are in the range of lo5 to 10 

Jm (with the exception of Rice and Simons and some of Husseini's 

estimates). Similarly the critical slip displacement for 

laboratory samples are in the pm to mm range, whereas those for 

field estimates are in the cm to m range. These orders of 

magnitude differences are unlikely to be due to temperature or 

normal stress differences since some of Wong's laboratory tests 

were carried out at close to inferred crustal conditions. There 

is reason to believe that natural earthquake faults with 

en-echelon fissures and discontinuities would have "surface 

C 

- 2  

roughness" orders of magnitude larger than that for laboratory 

specimens, thus contributing to the higher b and G values. 
C 

To illustrate the plausible dependence of b on surface 

roughness, estimated ranges of s from iaboratory tests inciuding 
intact and sawcut rocks, jointed rocks and clay, as well as from 



61 

natural faults are plotted in Fig. 23a. The suggestion is that 

the increasing "surface roughness" of rocks, jointed rocks and 

natural faults are, in addition to normal stress, responsible for 

the increasingly large values of G also shown in Fig. 23b. In C' 
f summary, these observations indicate that (0' - (T ) is sensitive 

to normal stress, whereas s is sensitive to surface roughness, and 
their product s(oP - 0 ) gives the critical energy release rate. f 

The laboratory rock data on G for mode I1 sliding are 

generally of; the order 10 Jm . This compares with the much 

lower value in tensile tests which give data mostly in the range 

of 10' - 10 Jm (see e.g., B. Atkinson, this volume. However, 

the 10 - 10 range may be an underestimation of true values; see 

discussion below.) Presumably the micromechanism of the breakdown 

process may be quite different, absorbing much more energy in the 

shear failure mode. 

C 
4 - 2  

2 -2 

1 2 

Lastly, estimation of the size of the breakdown zone w for 

laboratory specimens are easily obtained from the s and (a - u ) 

data and applying (37), and they are also listed in Table 1-4. 

These values of w give an indication of minimum characteristic 

P f 

dimensions in laboratory specimens for a valid K -test. Wong 

and Rice's analyses of Rummel et al's test results suggest w to be 

in the 0.1-lm range for granitic rocks. Since most laboratory 

IIC 

specimen sizes are smaller, measurements using standard elastic 

brittle fracture toughness technique are likely to underestimate 

the true K -values. For example, the references cited by IIC 
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Atkinson (Table XX in Chapter YY, this volume) give values of KIIc 

For p = 1 5 - 3 0  GPa, Y - 0 . 2 5  as 

typical shear modulus and Poisson's ratio for most surface rocks, 

this translates to (using (7)) 2 5 - 5 0  Jm . Comparison with 

on the order 1 MPa 6. and KIIIc 

- 2  

Table 1 shows that this is at least two orders of magnitude lower 

than that obtained through the slip weakening relation, as 

described in section 3 . 4 . 1 .  

In general, it would seem advisable to avoid using the 

conventional fracture toughness test, especially for rocks with 

large grain size (and surface roughness, €or mode 11) unless 

unusually large specimens are used. This statement appears to be 

applicable even for mode' I (tension) fracture toughness testing, 

Figure 2 4  (after Ingraffea et al, 1984) for example, shows the 

underestimation of fracture toughness for small specimens and 

clearly suggests the size dependence of conventional K -test IC 
results. The fitted curves are based on a non-linear analysis to 

be explained in the following section. 

IV. SLIP DISTRIBUTIONS AND INTERACTIONS 

This section describes the representation of slip surfaces 

with generally non-uniform slip in a medium of arbitrary geometry 

and material behavior. In section 4 . 1 ,  the effect of slippage in 

transferring loads is discussed through Green's functions which 

co:t&lin inf=?-mati=n "L - F  +-kc. L I I G  z,ed:.&i r,at-rial Ur- l ldvLuL -I- ---- - -- arid geometry. 

The formulation results in integral equations when constitutive 
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relations are imposed on the slip surfaces to relate the local 

shear stress to local slippage, as. e.g., in the slip-weakening 

model discussed in Section 3 .  Such formalism is superior to a 

kinematic description of fault slip because the slip magnitudes 

are part of the solution in solving the problem for a prescribed 

load. The implication is that further physical insight could be 

gained by understanding the slip progression process, which is of 

particular significance in the prediction of slip instabilities. 

Section 4.2  describes the structure of the Green's functions with 

respect to spatial dependence and their homogeneous and 

inhomogeneous parts associated with material boundaries. Selected 

Green' s functions most relevant in applications to studies of 

earth faulting are collected in Table 5. For full descriptions of 

such and other Green's functions, the reader should consult the 

references directly. Sections 4 . 3  and 4 .4  review previous studies 

of earth faulting which made use of the methodology described in 

4.1 and 4 . 2 .  They are presented in a manner to best illustrate 

the theoretical concepts developed in this and earlier sections. 

4.1 Integral Representation and Physical Interpretations 

For a body of any medium with planes of discontinuities, the 

most general representation of the stress state CI at a point x 

and at time t due to some arbitrary slip 6 introduced at points x 
ij -P 

-Q 
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and at time t along L (Fig. 25) is 

0 where D (x t) is to be interpreted as the stress state at point 

x if no slipping occurs. The stress induced at x due to slip at 
-P -P 

all locations x is contained in the integral term, carried out 

over all planes of slip displacement discontinuities. The time 

integration is needed in the case of a medim in which memory 

effects are important. These include time-dependent response in a 

viscoelastic medium and diffusion in a fluid-infiltrated 

poro-elastic medium. Indeed the information of the structural 

geometry and the rheology of the stress transmitting medium are 

contained in the Green‘s function Gij ($ ,  %, t, t ) ,  sometimes 

known as the influence function. It is the fundamental solution 

ij -p’ 

-Q 

of the stress at point x at time t due to a unit shear 
ij -P 

dislocation suddenly introduced at point x and at time t . Many 

elastic and some viscoelastic and poro-elastic solutions for 

various geometries have been obtained, A selection of Green’s 

functions useful in describing slippage effects in earthquake 

zones are tabulated in Table 5. There have been numerous 

interesting applications of these Green’s functions, some of which 

will be described in this section. 

-Q 
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To give specific interpretation to ( 4 8 )  and to make contact 

with shear rupture models described in Sections 2 and 3 ,  we assume 

here that slip occurs on a single plane (e.g., a boundary between 

two lithospheric plates) between -R<x<l. The plates are subject 

to remote shear loading D (Fig. 26). u may be interpreted as 

the shear stress transmitted across a fully locked fault due to 

tectonic scale plate motions. In this case the shear stress 

component in ( 4 8 )  reduces to 

0 0 

( 4 9 )  

In ( 4 9 )  the Green's function for an elastic plate under 

generalized plane stress deformation is used (Case I..2, Table 5 ) .  

This equation has the solution (Muskhelishvili, 1 9 5 3 )  

2 2  
1 + constant/ J R  -x 

where "constant" can be determined only from some supplemental 

conditions, e.g. no net dislocation in -R<x <+I, see (52b) below, 

giving "constant" = 0. As a special situation, suppose we impose 

the condition that all points which slip have stress reduced to a 

constant residual strength u , then u ( s )  - of in (50) and the slip 

1 

f 
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distribution 6 ( x  ) may be easily computed in terms of the stress 1 
drop Au = u 0 - u f. . 

Equation (51) is, of course, the slip distribution of the shear 

crack model which we described in Section 2 (Eq. (9)) and which we 

used to calculate the energy release rate based on the creep 

displacement rate in central California. The imposition of a 

uniform stress condition on a slip bound,ary is a characteristic of 

the crack model. The uniform stress condition is appropriate, if 

it is assumed that practically all points on the slip surface have 

undergone sliding exceeding 6 , in the context of the 

slip-weakening model, or if a quasi-plastic mechanism dominates 

the shear deformation behavior in a narrow shear zone as often 

postulated in the earth's lower crust where the temperature and 

pressure are high. 

* 

More generally, however, it is appropriate to impose a 

constitutive relation between stress and slip, such as the 

slip-weakening model. In this case, (50) becomes a singular 

integral equation in 6, and 

the solution of which often requires special numerical methods. 
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Some numerical procedures have been described by Erdogan and Gupta 

(1972), Cleary (1976), Stuart and Mavko (1979) and Fares and Li 

(1986). The equation (52a) and more generally ( 4 8 )  has a unique 

solution only if the net dislocation is specified. For an 

internal discontinuity, a zero net dislocation may be specified as 

It should be noted that (52a) may in fact be regarded as a 

multi-degree-of-freedom system extension of (21) in which the 

stiffness k is analogous to the Green's function here and the 

driving force k6 is now represented by u . 0 

0 

0 We now consider the maximum value of 0 that can be applied 

to the plate (Fig. 26) before the line of discontinuity -R<xl<R 

extends. This maximum shear load u may be predicted from brittle 

elastic fracture mechanics if the breakdown zone is much smaller 

than the crack length. Thus from (4a) and (7): 

0 

0 f (a 'max - ./2p (l+v)Gc/.rr.4 + 0 (53) 

If the breakdown zone occupies the complete fault then (19) (with 

T identified as u ) is applicable, and the maximum allowable load 

would be just the peak value up in the slip-weakening constitutive 

relation. These limits are plotted in normalized form as the 

0 
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slanting and horizontal dashed lines in Fig. 27.  The 

characteristic length 1 for normalization of the horizontal ch 

scale. is defined by 1 - 2(l+v)pGc/(uP-uf)* which is proportional 

to the breakdown zone size w in ( 3 6 ) .  For intermediate range of 

the half crack length 1, comparable in size to w, (52) together 

with a zero net stress intensity condition (33)  was solved 

numerically by Li and Liang (1986) and their result for a linear 

slip-weakening relation is shown as the solid line in Fig. 27. 

(Li and Liang actually solved for the maximum tensile load, but 

the solution coincides with the shear case since the Green's 

functions for the integral equation (52a) are exactly the same for 

both modes of deformation). Clearly, the full numerical solution 

ch 

confirms the applicability of the elastic brittle crack model when 

crack size is large in comparison to the breakdown zone size 

(lower left corner of Fig. 27) ,  and the applicability of the 

strength concept at the other extreme (upper right corner of Fig. 

2 7 ) .  

Conversely, Fig. 27 shows the inadequacy of  the strength 

criterion which overestimates the maximum failure load when 

displacement discontinuities exist in the loaded medium. This 

result is consistent with the observation that over-consolidated 

clay slopes often fail by progressive failure at loads much under 

the peak strength of the clay (Bjerrum, 1 9 6 7 ) .  The elastic 

brittle crack m o d e l  also o v e r e s t i m a t e s  the failure load when t h e  

breakdown zone is comparable in size to the crack length. This 
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observation affords an explanation for the underestimation and 

size-dependence of fracture toughness measured from small 

specimens in the laboratory and based on linear elastic brittle 

crack theory, as described earlier in reference to Fig. 24. 

Indeed the two curve fits in Fig. 24 are based on the predicted 

peak loads from the non-linear analysis shown in Fig. 27 and using 

(4). (These results hold for both mode I (with of = 0) and mode 

11). To translate from the non-dimensional plot of Fig. 27 to the 

dimensional plot of Fig. 24, we have used op - 5 MPa, Kc = 1000, 

1200 p s i 6  for the lower and upper curves. They are seen to fit 

the experimenta1,data reasonably well. 

4.2 Green’s Functions and Their Structures 

In the following, we shall further explore the structure of 

the Green‘s function for dislocation in media with different 

geometries and material properties. The emphasis is to bring out 

the common features between these Green’s functions which may on a 

superficial inspection, have little resemblance between each 

other. These common features include the spatial dependence and 
# 

the homogeneous and inhomogeneous parts of the Green’s function 

associated with material boundaries. 

For simplicity, we shall confine our focus to 2-D cases, 

although much of the discussions may be extended to 3-D cases as 

well. As further restrictions, we shall limit selected Green’s 

functions in Table 5 to static cases, and for geometries most 
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relevant to studying earthquake faulting problems, and then only 

the shear stress component on the line of discontinuity will be 

given. The reader should consult the original literature for a 

full description of the fundamental solutions. We have divided 

the selected Green's functions in Table 5 into three categories: 

they are those for elastic (Case I), viscoelastic (Case 11) and 

fluid-infiltrated poro-elastic media (Case 111). Various 

geometries are possible, such as infinite space, half space, plate 

structure, or layered. The dislocation may be of an edge type or 

of a screw type in shear (i.e. in mode I1 or in mode 111). In 

geophysical terminology, the edge dislocation may represent a 

semi-infinite (in length) fault in strike-slip or dip-slip. The 

screw dislocation may represent slip below locked zones in an 

infinite strike-slip fault. The Green's functions in Table 5 are 

given for unit, suddenly introduced dislocations. 

The single major characteristic exhibited by the Green's 

function for all media with different materials and geometries is 

the l/r singularity (where r is the distance measured from the 

dislocation front). This singular nature of the Green's function 

makes the integral term in ( 4 8 )  a Cauchy principal value integral. 

As mentioned earlier, special numerical techniques are available 

to handle this type of integral. In most cases, terms other than 

the l/r term occur in the Green's functions. These non-singular 

terms arise because of the presence of materiai boundaries. For 

example, in a layered medium, these boundaries may divide 
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horizontal regions into layers of different rigidities. Even in a 

half-space, the free-surface exists as a boundary dividing the 

medium into a regular one and one with zero rigidity. The 

non-singular terms are known as the inhomogeneous part of the 

Green's function whereas the singular terms form the homogeneous 

part. In many instances, these inhomogeneous terms have been 

derived by the method of images (see, e.g. Maruyama, 1966, 

Rybicki, 1971) with each term in a summation series representing 

an image point about a plane boundary. A s  an example, Case 1.4 

shows a screw dislocation at z = d below a free surface. The 

homogeneous part of the Green's function is of the form -p/27r(z-d) 

with a singularity 'at z = d. The inhomogeneous part is of the 

form p/27r(z+d) from an image source at z = -d, a reflection of the 

primary source about the free surface boundary. 

The elastic rheology assumed for the various geometries shown 

in Case I of Table 4 is plainly an idealization of the mechanical 

behavior of the earth's upper crust. Nevertheless the use of 

elasticity is often justified for the study of short time 

response. The plate geometry (e.g. case 1.1 plane stress) is also 

useful to describe the very long time response of the lithosphere 

when the asthenosphere is fully relaxed, i . e. the lithosphere has 
negligible basal traction and can be therefore treated as a free 

floating plate. 

The viscoelastic behavior of the asthenosphere has been 

suggested to be responsible for many observable time-dependent 
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phenomena. For example, Bott and Dean (1973), Anderson (1975), 

Toksoz et a1 (1979), Lehner et a1 (1981), and Li and Kisslinger 
I1 

(1984/85) have studied the diffusion of stress along a plate 

boundary as a model for migration of great ruptures and for 

filling-in of seismic gaps. Nur and Mavko (1974), Rundle and 

Jackson (1977), Thatcher and Rundle (1979), Thatcher et a1 (1980), 

Thatcher (1982, 1983, 1984), Melosh and Fleitout (1982), Melosh 

and Raeffky (1983) , Thatcher and Rundle (1984), Thatcher and 

Fujita (1984), and Li and Rice (1986) have studied the 

time-dependent post-seismic reloading of the lithosphere. Li and 

Rice (1983a,b) have studied the stiffening effect of the 

lithosphere/asthenosphere system as a model for stabilization 

against fault instability and for a precursory period during which 

local plate boundary straining accelerates to failure (see Section 

3.2.2). A common thread of these models is the recognition of the 

coupling between the elastic lithosphere and the viscoelastic 

asthenosphere, with the latter providing the time-dependent 

effect. Usually the time scale of the modelled phenomenon 

provides a rough constraint on the relaxation time and the 

viscosity parameter of the asthenosphere , although other 

non-earthquake related phenomena such as isostatic rebound from 

glacial loading have often been used to estimate the viscosity 

parameter of the asthenosphere. 

Case 11.1 In Ta51e 5 shows a screw dislocation in an elastic 

plate underlain by a Maxwell viscoelastic half-space, Again the 
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Green's function (Bonafede et al, 1986) has a homogeneous and an 

inhomogeneous part due to the presence of boundaries. For the 

short time response, the asthenosphere behaves like an elastic 

body and the stress expression given in Case 11.1 is reduced to 

that in 1.6 with d<H and p l  = p 2  for a screw dislocation in an 

elastic half-space. This is the high stiffness limit. (See also 

the discussion in connection with Fig. 14.). For the long time 

response, the asthenosphere is completely relaxed and the stress 

expression given in 11.1. is reduced to that in 1.3 for a screw 

dislocation in an elastic strip, which corresponds to the low 

stiffness limit, As the asthenosphere relaxes between these 

limits, the fault (modelled by the dislocation or a superposition 

of them) 'is reloaded and the deformation field on the ground 

surface also changes. The time scale for these time-dependent 

transients is given by r = 2q/p  ( q  - viscosity and p = shear 

modulus common to both lithosphere and asthenosphere) in this 

model. 

The above discussion may be extended to case 11.2 which shows 

an edge dislocation suddenly imposed in an elastic plate coupled 

to a viscoelastic foundation through a modified Elsasser model 

(Rice, 1980, Lehner et al, 1981). In the long time limit, the 

system reduces to that of an edge dislocation in a free floating 

plate (Case 1.2, plane stress), as can be shown by taking the 

limit of the time-dependent part of the Green's function, i.e. 

T(X1, t-) - - For this model, the relaxation time is given by X' 1 
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While there have been several viscoelastic solutions reported 

in the literature, most of them are limited to the time-dependent 

surface displacements only. This is clearly due to the interest 

of modelling post-seismic ground movements based on kinematic 

dislocation models. Unfortunately, Green’s functions of the type 

we discuss here are not widely available. 

The time-dependence afforded by a fluid-infiltrated 

poro-elastic medium comes from the diffusion process associated 

with pore-fluid flow. Such time-dependence has been used as a 

means of modelling after-shock distributions (Booker, 1974, Nur 

and Booker, 1972, Li et al, 1986) and water well level 

fluctuations (Roeloffs and Rudnicki, 1984/85). The stiffening 

effect of an undrained medium on stabilization against faulting 

has been discussed by Rice and Simons (1976) and Rice (1979). 

Cases 111.1 and 2 show the Green’s functions for an edge 

dislocation in such a medium for a permeable (Rice and Cleary, 

1976) and an impermeable (Rudnicki, 1986) fault. The time scale 

for both is controlled by the relaxation time 4c/x where c is a 

coefficient of consolidation (see Rice and Cleary, 1976). In the 

long time relaxed limit, the Green‘s function for Case 111.1 

reduces to that of Case 1.1 (plane strain). 

1 

It should be noted that Table 5 represents a small set of 

aviilablo Green’s functions in the literature. As an exmple,  t h e  

Green’s function for edge dislocation near a circular cavity in an 
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elastic medium has been derived by Dundurs and Mura ( 1 9 6 4 ) .  Such 

a Green's function could be used to construct the integral 

equation to describe the sliding of a joint near a rock' tunnel in 

geotechnical engineering. The possibilities are unlimited, and 

the reader is urged to read the above discussions as a general 

framework which may be specialized to particular applications, 

with the use of the proper Green's function. Many other Green's 

functions can be found in Mura ( 1 9 8 2 ) .  For many structural 

geometries containing displacement discontinuities, the Boundary 

Element Method coupled with the appropriate Green's function can 

often provide a powerful tool of analysis superior to the Finite 

Element Method (Fares and Li, 1 9 8 6 ) .  

4 . 3  ADplications to Dip Slip Faulting 

Two dimensional kinematic models have been used by Chinnery 

and Petrak ( 1 9 6 8 )  and Freund and Barnett ( 1 9 7 6 )  to simulate 

surface vertical movements due to dip-slip faulting on vertical 

and dipping faults. The two dimensionality of these models is 

usually justified on grounds that dip slip faultings occur on 

fault planes with lengths much longer than the widths (in the dip 

direction). In this section we describe a non-kinematic model due 

to Dmowska ( 1 9 7 3 )  and Dmowska and Kostrov ( 1 9 7 3 )  where the fault 

slip is not preassigned. Instead the fault surface is assumed to 

have uniform and constant shear resistance. This corresponds to 

the assumption of the elastic brittle crack model. Our discussion 
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will begin with the integral representation described in Section 

4.1, and making use of the appropriate Green's function. 

Using the coordinate system shown in Figure 28, and 

specializing to the shear component in the plane of the fault 

surface (48) becomes 

a 6 ( s  ) ds G(s-s ) S2 as 
0 

u ( s )  - u (s )  - 
s1 

(54) 

where the time integral has been dropped for the case when the 

material is elastic (with no time-dependent behavior). The 

appropriate Green's function is due to Freund and Barnett (1976) 

(see also Dmowska (1973)) and is shown in Table 5 ,  Case 1.5, 

5 -n 5 

1 n-o c Xn(s )" s 

1s 2+s2-2ss cos2al 3 G(s-s (55) 

where X are functions of the dip angle a and are given in Table 5 

(1.5). The presence of the traction free ground surface is 

accounted for by the inhomogeneous part of the Green's function. 

In (54) u is interpreted as the preexisting tectonic load if the 

fault plane is locked. (In most physical situations, only the 

change in tectonic load is important since only the change, and 

not the true value, in surface deformation can be measured,) 

Assuming that the fault plane slips with uniform shear resistance, 

n 

0 
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the left hand side of ( 5 4 )  is then a constant u , and ( 5 4 )  reduces 

to 

The singular integral equation (56) has been solved by Dmowska 

(1973) using quadrature formula to discretize the integral, which 

reduces to a set of linear algebraic equations that can be easily 

handled by a computer. The resulting slip distribution, which 

scales with u -0 , is plotted schematically in Figure 28 along the o f  

fault plane. Using a vertical displacement influence function 

derived by Freund and Barnett, the associated vertical movement on 

the ground surface can also be predicted and is schematically 

sketched in Figure 28 as well. 

The model described above may be made more realistic by 

considering a more sophisticated constitutive relation on the 

fault plane. For example, Dmowska indicated a method of 

incorporating pressure-sensitive friction effects. In that case, 

the shear resistance on the fault would depend on the tectonic 

normal stress acting across the fault and the friction 

coefficient. In addition, slip on the fault plane (in the 

presence of the traction-free boundary) would induce normal stress 

changes and the right hand side 02 ( 5 4 )  would have an extra term 

similar to the integral term but with a Green's function relating 
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normal stress change to shear slip. The inclusion of friction 

does not cause any more difficulty in the numerical solution of 

the singular integral equation. 

The analysis could be made even more complete when a 

slip-weakening constitutive law relating shear stress and slip is 

prescribed on the fault plane, as done by Stuart (1979a). The 

slip-weakening law employed by Stuart (similar to ( 3 8 ) )  reflects 

not only a gradual degradation of slip resistance with increased 

amount of slip, but also reflects the increasing ductility (shear 

flow as opposed to brittle fracture) with increasing depth. 

Although Stuart used the finite element method, the formulation 

described above is quite suitable to treat the problem. The only 

difference introduced is on the left hand sides of ( 5 4 ) ,  where o 

is now made to depend on 6 through the slip-weakening law. 

Introduction of such a term makes the singular integral equation 

non-linear, and the resulting set of non-linear algebraic 

equations will have to be solved by means of an iterative scheme. 

The advantage of such non-kinematic models is that the fault 

slip can come out as part of the solution, and in general is more 

realistic than an imposed uniform dislocation or uniform stress. 

Such non-uniform slip distribution would clearly influence the 

predicted surface deformation behavior, especially if the tip of 

the fault plane is relatively close to the ground surface, In 

addition, it is possible to simulate the progressive failure 

process in response to increased tectonic loading. The failure 
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law is inherent in the slip-weakening model, and Stuart used this 

to calculate the vertical movement at various stages prior to the 

1971 San Fernando earthquake. These results are reproduced in 

Figure 29a and is seen to qualitatively fit the available geodetic 

data. The fault geometry and the variation of peak stress is 

shown in Fig. 29b. It is interesting to note that fault slip 

occurs mostly below 20 km down dip prior to 1969, and a catch up 

process of rapid slip near the hypocenter occurs from 1969 up to 

the 1971 rupture (Fig. 29c). Inferences of such n0.n-kinematic 

models provide a means of studying the failure process leading up 

to the slip instability, an earthquake analogue. In general, it 

may be expected that surface deformation may show characteristics 

associated with the approach of an instability, such as 

accelerated vertical movement or strain rates. (See., e.g. Stuart 

and Mavko, 1979 for a detailed discussion of slip instability in 

the context of a strike-slip fault.) Although present available 

data on such precursory signals are scant, precursory deformation 

may nevertheless be useful for assisting future earthquake 

forecasting efforts. 

4.4 ApDlication to Slip-stress Interaction Along an 

Inhomopeneous Fault 

Several directly or indirectly observable fault zone 

behaviors suggest that fault surface strength (resistance to slip 

motion) is spatially inhomogeneous. These observations include 

~ ~~ ~ 
~ ~~ ~ 
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seismicity concentrations, and episodic creep and repeated 

ruptures of different fault segments. A direct result of fault 

strength inhomogeneity is the non-uniform distribution of fault 

slip and stress accumulation, which no doubt influence surface 

deformztion behavior. Thus interpretation of geodetic 

measurements must consider not only depth changes of fault 

property but also along-strike fault property changes , 

particularly where measurements are made close to junctures where 

segments of very different fault behavior occur. In addition, and 

especially relevant to the discussions in this chapter the 

stressing of a locked location must be sensitive to the slippage 

of nearby creep'ing segments, and such slip-stress interaction must 

be accounted for when considering the processes leading to the 

nucleation of a shear rupture. 

Based on the integral representation described in Section 

4.1, Tse et a1 (1985) analyzed the stressing of locked patches 

along a creeping fault. Equation (52a), where the Green's 

function for a mode I1 edge dislocation in an elastic plate (Case 

1.1 in Table 5) has been used, describes the mechanics of the 

two-dimensional lithospheric plate shown in Figure 30a. The plate 

is loaded by tectonic stresses u , and the plate boundary responds 

with a distribution of shear stress u(x  ) and slip 6(x ) .  These 

parameters must necessarily have quantities averaged over the 

0 

1 1 

thickness of the plate, which is treated as undergoing plane 

stress deformation. It is possible to incorporate the depth-wise 
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change of fault zone properties at the plate boundary by 

considering a cross section at x as shown in Figure 30b. This 1' 
section is assumed to undergo antiplane strain deformation, the 

analysis of which provides a spring relationship connecting the 

thickness averaged stress a(x ) and the thickness averaged slip 

6(x1) through a local spring constant k(xl). It is in this spring 

constant where the details of the depthwise changes in fault 

1 

properties are incorporated. This spring relation is used for the 

left hand side of (52a) which again results in a singular integral 

equation. The formulation of a quasi-three dimensional problem 

' described above is really a generalization of the powerful 

line-spring procedure introduced by Rice and Levy (1972) for . 

treatment of part-through surface cracks in tension-loaded elastic 

plates or shells. Parks (1981) has shown the remarkable accuracy 

of the approximate procedure in calaulating stress intensity 

factors by comparing it to full scale 3-D finite element 

calculations. The procedure has been used by Li and Rice 

(1983a,b) to analyze strike-slip ruptures in tectonic plates as 

described in section 3.2.2. 

As a specific model, Tse et a1 (1985) approximated the fault 

zone as sliding under constant stress (taken as zero reference 

stress) at all depths except for a locked seismogenic zone, as 

shown schematically in Figure 4 .  The free sliding to a depth of 

b(xl) is meant to represent shallow fault creep, and the free 

sliding below the seismogenic zone (between z=b(xl) and z-H-a(xl)) 
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is meant to represent shear flow under essentially constant 

stress. It is useful to note that the geometry of the locked 

patch along-strike is then defined through the dependence of the 

parameters a(x ) and b(xl) on x The assumptions described above 

in essence define an anti-plane strain problem of an elastic strip 
1 1' 

containing two surface edge cracks of depths a and b. The 

solution was obtained by conformal mapping technique and the 

resulting spring constant, which relates the local stress o(x ) to 

the local slip 6(x ) in Fig. 30a by ~(x,) = k(xl) 6(x1), is (Tse 

et al, 1985) 

1 

1 

. The stress intensity factors are given in ( 6 ) .  Note that when a 

and b vanish, the spring constant approaches infinity. This means 

that the local fault slip 6(x,) must be zero for any finitely 

imposed stress when that local segment is fully locked. In (52a) 

the integral limits at -1 and R imply that 6-0 beyond this range 

of interest, and this results in a jump in stress u at this 

junction due to the displacement discontinuity. To overcome this 

unnatural artifact, Tse et a1 modified this assumption to one 

0 where the stress  falls t o  the tectonic load level o beyond the 

range -R<x<R, and the assumed uniform slip there can easily be 

computed using (57) for a given far field spring constant k-. 

Thus (52a) has an additional term contributed by such far field 
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uniform dislocation, resulting in the form 

Equation (58)  is used to study the stresssing processes of various 

fault locking geometries. Figure 31a shows one of these 

simulations with the lower margin of the locked region chosen from 

depth of the seismicity considerations. For a loading rate G o  of 

0.3 x 10 p/yr, the predicted thickness-averaged and surface slip 

rates are shown in Fig. 31b. Geodetic creep data are shown as the 

various symbols in the same figure. In Fig. 31c the thickness 

average stressing rate is shown to vanish in the creep zone and 

as required. The falls to the tectonic level at large x 

stressing rate is very high at the tip of the submerged locked 

patch at xl= 35km, a consequence of interaction between the free 

slip to its left and the sudden locking to its right. Another 

interesting result obtained from the analysis of Tse et a1 is the 

estimation of the fracture energy release rate of lo7 Jm along 

the lower margin of the locked 1 8 5 7  rupture zone, based on 

required stressing rate to match observed creep data and an 

assumed earthquake cycle time of 150 yr. This order of magnitude 

estimation is again consistent with other estimates already 
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mentioned in section 3 (see also Table 4 ) .  Tse et a1 noted that 

their attempt to model the locked patch at Parkfield (based on the 

local seismicity and creep data) was limited 'by the short 

wavelength geometric changes along strike and the basic 

requirement of long wavelength changes in the line-spring 

formulation. 

Stuart et a1 (1985) solved the same problem using a three 

dimensional version of ( 4 8 ) .  A three-dimensional Green's function 

due to Chinnery (1963) for a rectangular dislocation patch in an 

elastic half space was employed. Shear resistance on the fault 

plane again takes the form of a bell-shaped slip-weakening law 

(38). Their model parameters were constrained by repeated 

measurements of fault creep. Figure 32 shows one of their 

computed results compared to. creep data near the Parkf ield region 

for more than a decade. While an instability event occurring at 

Parkfield is placed at around 1987, Stuart et a1 cautioned that 

the data would not be sufficient to constrain all the model 

parameters until the fault creep enters the (nonlinear) 

accelerating stage. 

The model of Stuart et a1 appears tp be more suitable to 

analyzing the Parkfield region because of the inherent 

three-dimensional nature of the patch geometry. For elongated 

patches, such as that recently analyzed by Stuart (1984/5) for the 

500 km segment of the San Andreas f a d t  s ~ a t h  of Parkfield, the 

line-spring formulation used by Tse et a1 should be quite 
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adequate. A characteristic of Stuart and co-worker's models, as 

opposed to many of the available kinematic models in the 

literature, is the ability to analyze the process leading to an 

instability, which might form the corner stone of any earthquake 

forecast model. This is not possible for kinematic models even if 

they 'are able to simulate available surface deformation data, 

since no failure criterion (such as in the form of critical energy 

release rate or slip-weakening law) is employed to track the 

progression of fault slip. 

The line-spring procedure described above in connection with 

Tse et al's work could track the progressive failure process if a 

failure criterion is imposed. For the mode I11 edge crack model 

(Figure 4) used, the suitable criterion would be a critical energy 

release rate. Li and Fares (1986) studied the stress accumulation 

and slip distribution at the junction of a creep segment and an 

adjacent segment where slip penetration into the seismogenic zone 

occurs under increasing tectonic load. No shallow creep was 

simulated in that study (i.e. b(x)-0 in Figure 4 and in (57)). In 

anticipation of future studies of multiple lines of interacting 

displacement discontinuities, (48) was recast into an indirect 

Boundary Element formulation (Fares and Li , 1986). Following 

Stuart (1979a,b), but in terms of energy release rate based on 

elastic brittle crack mechanics, the failure criterion was a 

depth-dependent one, as shown in Fig. 17a. An interesting result 

of that analysis was the prediction of a long-term stable slip 
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rate distribution of a parabolic shape in the creep zone, 

decreasing gradually into the adjacent zone which undergoes slip 

penetration and is capable of seismic rupture. With extensive 

slip penetration, the slip-softening behavior becomes more evident 

at this segment, eventually leading to a loss of equilibrium of 

quasi-static slip. This process is accompanied by slip rate 

acceleration, which exceeds that inside the creep zone, as shown 

in Figure 3 3 .  

While the models described in this section and in section 4 . 3  

incorporate important elements for the study of the instability 

process, results from such instability models nevertheless have to 

be treated with caution. This is because of the assumption of 

pure elastic behavior in the body containing the planes of slip 

discontinuities. In the real earth, the elastic lithosphere is 

underlain by a viscoelastic upper mantle and, possibly, contains a 

viscoelastic lower crust. Time-dependent phenomena attributed to 

the viscoelastic relaxation effect has been described in section 

( 4 . 2 ) .  To incorporate the viscoelastic effects, it would be 

necessary to use one of the Green's functions of the type listed 

in Table 5 case 11, and the singular integral equation ( 4 8 )  

requires both a spatial integration and a time integration to 

account for the memory of past slip events. The full solution 

of such an equation is presently not available in earthquake 

instability analyses. A reduced form of ( 4 8 )  where slip Is 

averaged over the length of progressive slip zone penetration 
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(e.g. in a seismic gap) has been considered by Li and Rice 

(1983a,b) (see Section 3 . 2 . 2 ) .  They found that the instability 

predicted from the models described above corresponds to the onset 

of a quasi-static self-driven period in which stable sliding is 

still maintained but slip acceleration would be inevitable even if 

the tectonic load is kept constant. Physically, this implies that 

a precursory stage, whose time duration is associated with the 

viscosity parameter of the asthenosphere, may precede a dynamic 

instability, or an earthquake rupture. For short term earthquake 

forecasting of great ruptures, it appears to be important to 

capture and interpret the seismic and geodetic data in this 

precursory stage. Future studies of this type of model, with full 

solution of ( 4 8 ) ,  should provide further insight into the time and 

spatial redistribution of surface deformation associated with 

spreading of the softening zone from one or more nucleation points 

on the eventual fault plane prior to a great rupture. 

L 

V. SUMMARY AND CONCLUSION 

This article has focused on the fundamentals of theoretical 

The slip-weakening model is used as a modelling of shear rupture. 

means to unify the discussion, with the elastic brittle crack 

model as one limiting case of extreme non-uniform slip and the 

strength model as the other limiting case of essentially uniform 

slip. The slip-weakening model is regarded as a general 

constitutive law for slip surfaces. Implications in stability of 
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slip systems, and on the extraction of material fracture 

resistance parameters are discussed. Non-kinematic models of 

faulting in various geometries are reviewed and Green's functions 

are described in the context of distributed slip for media of 

elastic, viscoelastic and poro-elastic behaviors. 

Although the available theories of shear rupture have 

provided much insight into understanding the mechanics of earth 

faulting, a complete understanding of many phenomena remains out 

of reach. Recent advances in rate and state dependent 

constitutive laws based on careful experimental observations 

appear to provide a rich foundation on which the transition of one 

earthquake cycle to another could be better understood. There 

appears to be a need to study non-kinematic models in media with 

inelastic behavior in order to understand -natural phenomena 

sensitive to the time-dependent rheology of the earth. Finally, 

natural faults are never ideally straight and'with only a single 

strand, and fault surfaces are likely to have mechanical 

properties varying along-strike and with depth. These 

characteristics call for 3-D modelling, in order to describe 

non-uniform distributed slip on multiple non-linear fault strands. 

It is likely that the fault constitutive laws, fault geometry and 

the medium rheology all play important roles in controlling the 

time and location of the nucleation of a slip instability. 

AdvaTices II? understanding s l i ~  rrtpture behavior will have to come 

from laboratory and in-situ experimentation' and from analytic and 
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numerical modelling. While progress has been and will continue to 

be made in the near future in these directions, it may be expected 

that serious obstacles exist. For example, it is not clear how 

one might translate experimental observations in the laboratory to 

the field given the orders of magnitude difference in the values 

of slip-weakening model parameters obtained in the laboratory and 

those estimated from field observations. Also, the more 

sophisticated and complete a model is, even if sufficient 

computational power is available (which is not necessarily the 

case for non-linear problems of the type suggested by the rate and 

state dependent friction laws), the more model parameters will 

need to be constrained. At the present time, available 

geophysical data, especially those collected precursory to a large 

plate boundary rupture, is extremely limited. 
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TABLE CAPTIONS 

Table la: Slip-weakening Model Parameters for Intact Rocks. 

Table lb: Slip-weakening Model Parameters for Sawcut Rocks. 

Table 2 : Slip-weakening Model Parameters for Rock Joints (all at 

room temperature). 

Table 3 : Slip-weakening Model Parameters for Over-consolidated 

Clay. 

Table 4 : Slip-weakening Model Parameters for Natural Faults. 

Table 5 : Green's Functions for Dislocations in Elastic, 

Viscoelastic and Fluid-infiltrated Poro-elastic 

Media. 
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FIGURE CAPTIONS 

Fig. 1 Tip of a shear crack in mode I1 and mode I11 deformation. 

The darker shade denotes an annular region in which the 

asymptotic crack tip stress fields given by (1) and (2) 

are valid. 

Center crack with half crack length in an elastic plate 

loaded by remote shear stress u . Crack faces have 

f uniform shear resistance (T . 

Fig. 2 

0 

Fig. 3 Semi-infinte crack inmode I1 deformation in an elastic 

Crack faces are loaded by line forces P infinite body. 

(per unit thickness) at a distance b from crack tip. 

Fig. 4 Double edge cracks with crack lengths a and b in mode 111 

deformation in an elastic strip loaded at the remote 

boundaries by thickness averaged stress (T. The thickness 

averaged slip displacement 6 is that associated with the 

presence of the cracks 

Fig. 5 Schematic illustration of the extension process of the 

crack tip and the associated work absorbed by relaxing the 

stress (la) with simultaneous crack tip displacement 

(Ib) * 

Fig. 6 Slip rate data from a 200 km trace of the San Andreas 

fault in central California (after Burford and Harsh, 

1980; Lisowski and Prescott, 1981; Schulz et al, 1 9 7 2 ) .  



Fig. 7 

Fig. 8 

Fig. 9 
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The curve fit is from the elastic brittle center-crack 

model (9), with coordinates origin set at 10 km west of 

Monarch Peak. The broad-scale geodolite data carries 

stronger weight because of the 2-D (thickness-averaged) 

nature of (9). 

Tube of material cut out by contour I? near crack tip, to 

illustrate the balance of energy flux into this tube of 

material and energy absorbed by elastic work in A, 

frictional work on L, and energy which drives crack 

extension, G. 

The J-integral applied to a mode I1 shear crack, to relate 

the energy release rate G to J and the frictional 

dissipation. 

Application of the J,integral to the San 

extract the critical energy release rate 

with the 1857 Ft. Tejon earthquake M = 8 

Andreas fault to 

G associated 

3 .  

C 

Fig. 10 (a) Triaxial test results for initially intact granite 

samples reported in Rummel et a1 (1978) for three 

different confining pressures. (b) Slip-weakening 

branches deduced by Rice (1980, 1984) from raw data in 

(a> * 

Fig. 11 Slip-weakening curves for four types of rock joints (from 

Goodman, 1970). Note that when slip-hardening occurs as 

in case 4b, the slip-weakening model and associated 

theories are not applicable. 



104 

I 
I 

Fig. 12 Schematic plot of the constitutive slip-weakening model, 

with (a) showing the post-peak weakening with 6, and the 

rigid unloading branches, and (b) showing the increase of 

peak strength and residual frictional strength as a 

function of effective normal stress, and ( c )  showing the 

decrease of peak strength and residual frictional 

strength as a function of temperature. Note that (b) and 

(c) have been drawn to illustrate the general increase 

followed by decrease of strength drop (a -a ) with a 

and the general decrease in strength drop with T. 

P f  
n 

Fig. 13 (a) A single-degree-of-freedom spring-block model, with 

loading through imposed displacement 6 0 ,  and load 

transmitted through a spring with stiffness k. (b) Trace 

of equilibrium loads uA, ag, . . . ,  a 
slips SA, 6B, .,.,6E. 

equilibrium cannot be maintained, followed by slip 

and corresponding E’ 

Instability sets in at E, when 

acceleration and rapid stress drop rate approaching 

infinity, as illustrated in (c). Reestablishment of 

equilibrium can be at any of the points F, G or H. (d) 

For a stiffer spring and the same slip-weakening 

relationship, the unloading lines are steeper and no 

dynamic instability occurs. The stress may drop and the 

slip may accelerate as in (e), but their time rate of 

change do not approach infinity. 
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Fig. 14 (a) A single-degree-of-freedom system loaded through a 

standard viscoelastic element. (b) The point I represents 

initial instability, when the loading system is fully 

relaxed, with stiffness kl. 

dynamic instability when the loading system reaches its 

The point D represents 

maximum stiffness kl + k2. Between I and D, the block is 

self-driven . 
Fig. 15 (a) Upward progression of slip in a seismic gap zone in 

the elastic lithosphere of thickness H underlain by a 

zone, 

Fig. 16 Time-dependent compliance of the coupled-plate system 

(solid line), and its approximation by a single parameter 

standard linear model (dashed line) for two seismic gap 

lengths. 

Fig. 17 (a) Assumed fracture energy variation with depth. 

(b) Thickness-averaged stress versus slip ( 0 - 6 )  relation 

viscoelastic foundation of thickness h. The lithosphere 

is treated as undergoing 2-D plane stress deformation as 

shown in (b) which depicts loading of the plate by u , 0 

and with (thickness averaged) stress D and slip 6 in the 

seismic gap zone. The 0 - 6  relation at the plate boundary 

is derived from the anti-plane strain mode I11 elastic 

brittle crack model shown in (c). The resulting 2-D 

problem is further reduced to a single-degree-of-freedom 

model by assuming that D is uniform in the seismic gap 
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for elastic-brittle crack model of the antiplane rupture 

progression shown in Fig. 16c. Based on (18) and the 

fracture energy distribution as in (a). The point P 

represents the peak stress state and the point M 

represents the maximum slip possible for the a-6 

relation shown. Instability must occur between P and M. 

Fig. 18 Solution of ( 2 4 )  for (a) crack penetration, (b) averaged 

stress, and (c) averaged slip, as a function of time t. 

The subscripts P ,  I, and D for the normalizing parameters 

denote the Eeak, initial instability, and anamic 

instability states. Each plot shows the solution 

corresponding to two loading rates R .  

Fig. 19 (a) Stress and slip distributions near a crack tip with a 

breakdown zone in which the deformation behavior is 

governed by the slip-weakening relation. The weakening 

branch is shown in (b). 

Fig. 20 (a) Assumed linear variation of stress in breakdown zone 

( 3 4 )  and (b) the corresponding slip-weakening relation, 

for estimation of the breakdown zone size w. After 

Palmer and Rice (1973). 

Fig. 21 (a) Rock specimen loaded triaxially. (b) Experimental 

output of differential stress versus axial shortening. 

(c) Relation between axial relative movement of sliding 

surfaces and slip 5 . jdj Derived siip-weakening curves 
- from (b). From Rice (1980). 
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Fig. 22 Composite of critical energy release rate versus normal 

stress, from two test series on San Marcos gabro and) 

Fichtelbirge granite. After Wong (1986). 

Fig. 23 (a) Nominal slip displacement ranges and (b) critical 

energy release rates for various geo-materials, from 

experimental testing and inferences from field 

observations. 

Fig. 24 Size dependence of apparent mode I fracture toughness of 

various rock types on crack length in laboratory 

specimens. Data from Ingraffea et a1 (1984). The curve 

fits are based on numerical solution of the non-linear 

singular integral equation (52) by Li and Liang (1986), 

assuming a linear slip-weakening relation. 

is for a plateau value (large crack length a) of K of . 

1200 psi ./in, and the lower fit is for a plateau value of 

KIc of 1000 psi ./in. 

also refer to Fig. 2 7 .  

The upper fit 

IC 

See text for further details and 

Fig. 25 A general body containing a line of displacement 

discontinuity L. Slip 6 at x induces stress (T at x . 
-q ij -P 

Fig. 26 Elastic plate containing a single line of displacement 

discontnuity with stress distribution o(x ) and slip 

distribution 6(x ) .  The plate is loaded remotely by u . 
1 

0 

1 
Fig. 27 Prediction of maximum applied load for the center crack 

plate structure shown as insert, from elastic brittle 

crack theory (slanted dashed line) and from strength 



108 

criteria (horizontal dashed line). The solid line is 

predicted by including a breakdown zone where material 

deforms according to a linear slip-weakening relation, 

and is numerically obtained by solving ( 5 2 ) .  

Fig. 28 Shear slip distribution and induced vertical ground 

2' displacement in dip slip faulting from s to s 1 

Fig. 2 9  (a) Comparison of observed and predicted uplift at various 

times prior and up to the 1971 San Fernando earthquake, 

based on a slip-weakening fault model with geometry shown 

in (b). The fault slips for various time periods are 

shown in (c). 

Fig. 30 (a) Elastic model of tectonic plate assumed-to undergo 
0 plane stress deformation, and loaded by remote stress ~7 , 

with stress and slip distributions 0 and 6 at plate 

boundary. (b) A local section of the plate boundary, 

assumed to undergo anti-plane strain deformation. The 

shaded fault zone can be modelled by any appropriate 

constitutive law, and the resulting relation between 

~ ( x  ) and 6(x ) defines the local spring constant k(x ) .  1 1 1 
Fig. 31 (a) One of several geometries of locked patches on a fault 

surface analyzed by Tse et a1 (1985) for stressing of the 

Parkfield region of the San Andreas fault. The lower 

margin of the patch has been chosen from depth of the 

seismicity consideration. (b) Comparison of model 

prediction based on the solution of (58 )  to geodetic slip 
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rate data. (c) Computed thickness averaged stress 

distribution along strike. From Tse et a1 (1985). 

Fig. 32 (a) Map view of the San Andreas fault strand near 

Parkfield. (b) Geometry of locked patches. (c) Comparison 

of model prediction of fault creep at various locations 

shown in (a) with creepmeter data. The theoretical creep 

has been multipled by 0.8 to compensate for 

underestimation of fault slip measured by creepmeters. 

From Stuart et a1 (1985). 

Fig. 33 Computed slip rate as a function of distance along strike 

at various stages prior to instability, in a creep zone 

centered at x ==+2H. 

penetration of the brittle zone occurs with increasing 

tectonic loading. 

distribution qualitatively agrees with contemporary data, 

as shown in Fig. 31b, at the three earlier time steps 

shown. As instability approaches, the slip rate at the 

edge of the creep zone accelerates and exceeds that inside 

the creep zone. From Li and Fares (1986) 

Outside the creep zone, upwird 1 

Note that the parabolic slip rate 
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